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Orientational relaxation in dipolar systems: 

How much do we understand the role of correlations? 

by S. RAVICHANDRAN and B. BAGCHIT 

Solid State and Structural Chemistry Unit, Indian Institute of Science, 
Bangalore-56001 2, India 

T also at the Jawaharlal Nehru Centre for Advanced Scientific Research, 
Bangalore, India 

Dipolar systems, both liquids and solids, constitute a class of naturally abundant 
systems that are important in all branches of natural science. The study of 
orientational relaxation provides a powerful method to understand the microscopic 
properties of these systems and, fortunately, there are many experimental tools to 
study orientational relaxation in the condensed phases. However, even after many 
years of intense research, our understanding of orientational relaxation in dipolar 
systems has remained largely imperfect. A major hurdle towards achieving a 
comprehensive understanding is the long range and complex nature of dipolar 
interactions which also made reliable theoretical study extremely difficult. These 
difficulties have led to the development of continuum model based theories, which 
although they provide simple, elegant expressions for quantities of interest, are 
mostly unsatisfactory as they totally neglect the molecularity of inter-molecular 
interactions. The situation has improved in recent years because of renewed studies, 
led by computer simulations. In this review, we shall address some of the recent 
advances, with emphasis on the work done in our laboratory at Bangalore. The 
reasons for the failure of the continuum model, as revealed by the recent Brownian 
dynamics simulations of the dipolar lattice, are discussed. The main reason is that 
the continuum model predicts too fast a decay of the torque-torque correlation 
function. On the other hand, a perturbative calculation, based on Zwanzig’s 
projection operator technique, provides a fairly satisfactory description of the single 
particle orientational dynamics for not too strongly polar dipolar systems. A recently 
developed molecular hydrodynamic theory that properly includes the effects of 
intermolecular orientational pair correlations provides an even better description of 
the single-particle orientational dynamics. We also discuss the rank dependence of 
the dielectric friction. The other topics reviewed here includes dielectric relaxation 
and solvation dynamics, as they are intimately connected with orientational 
relaxation. Recent molecular dynamics simulations of the dipolar lattice are also 
discussed. The main theme of the present review is to understand the effects of 
intermolecular interactions on orientational relaxation. The presence of strong 
orientational pair correlation leads to a strong coupling between the single particle 
and the collective dynamics. This coupling can lead to rich dynamical properties, 
some of which are detailed here, while a major part remains yet unexplored. 

1. Introduction 
Orientational relaxation of dipolar molecules in the condensed phases has been a 

subject of great interest for many decades. The most well-known work in this field is 
certainly the theory of Debye (1929), who used the rotational diffusion model to explain 
dielectric relaxation of dipolar liquids. Subsequently, a great number of experimental, 
theoretical, and most recently, computer simulation studies have been devoted to study 
orientational relaxation in a large number of dipolar liquids. The  reason for sustained 
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272 S. Ravichandran and B. Bagchi 

interest in the orientational relaxation of dipolar molecules is manyfold. First, the most 
important solvents for chemical industry consist of dipolar molecules, for example, 
water, acetonitrile, acetone, alcohols, to name a few. These liquids are also of great 
importance biologically. Naturally, there has always been a great interest in 
understanding the role of these solvents in chemical reactions, so much so that the field 
of orientational relaxation in dipolar liquids can now be regarded as a sub-field of 
chemical dynamics. Second, many spectroscopic experiments measure the orientational 
relaxation (Berne and Pecora 1976, Rothschild 1984). Not only dielectric relaxation, 
but also many other techniques, such as anisotropic Raman scattering and Kerr 
relaxation, probe orientational motion. Light scattering techniques are also sensitive to 
orientational relaxation. Although our understanding has increased continuously, 
several fundamental, problems have remained unsolved, as discussed below. 

The theory of Debye (1929) provides a simple description of orientational 
relaxation. If we define the single particle orientational correlation functions C[( t )  by 
the following expression 

where Y,,,JQ(t)] are the usual spherical harmonics of angle, Q(t),  that describes the 
orientation of the tagged molecule at time t ,  then Debye's theory predicts that Cr(t) 
decays exponentially in the following fashion 

Cl(t) = exp [ - l(1 + 1)&t], 

where DR is the rotational diffusion coefficient of the tagged molecule. If one makes 
the additional assumption that molecular rotations are independent of each other, then 
one arrives at the following simple expression of the frequency dependent dielectric 
function, E(O)  

€0 - Em 
€(a) - Em = 

1 + iozD' (3) 

where e0 and are the zero and the infinite frequency dielectric constants of the liquid 
and zg = (2&) - ', is well-known Debye relaxation time. Equations (2)  and (3) have 
been widely used to analyse experimental results and it is often assumed that they are 
equivalent which, however, is not correct-a fact first clearly addressed by Madden and 
Kivelson (1984). We shall discuss this point later. 

The rotational diffusion model of Debye has been found to be fairly successful to 
explain orientational dynamics of non-polar molecules in simple non-polar liquids 
(Berne and Pecora 1976, Rothschild 1984, Fleming 1986, Ben-Amotz and Scott 1987). 
The situation is, however, considerably more complex for dipolar molecules. This is 
primarily because the dipolar interactions are long ranged. The interaction energy 
between two dipolar molecules separated by a vector distance r is given by 

where pi is the dipole moment of the ith molecule and r is the position vector between 
ith andjth molecules. The complex nature of this interaction potential has made fruitful 
analytical work prohibitively difficult. In view of these difficulties, a macroscopic 
description was developed quite early by using the continuum model based 
concepts-the aim was to include the effects of the long-range interaction in an average 
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Relaxation in dipolar systems 273 

fashion. This approach was pioneered by Onsager (1936) who showed how to include 
correctly the reaction field effects, which arises from the electric polarization of the 
solvent by the rotating dipole, within the continuum model description. Onsager’s 
expression for the static dielectric constant in terms of molecular properties has been 
extensively used by experimentalists (Frohlich 1958, Bottcher and Bordewijk 1979) 
over the last half-century and, given its simple form, has been remarkably successful 
(Cole 1989). Subsequent theoretical studies, starting with Kirkwood (1936), have 
extended Onsager’s theory in may directions and at present we seem to have a 
satisfactory theory for static properties of a simple dipolar liquid (Gray and Gubbins 
1984, Wei and Patey 1990). 

The situation, however, turned out to be considerably different for dynamics. 
Onsager’s continuum model was extended to treat dielectric relaxation by Fatuzzo and 
Mason (1967) and by Nee and Zwanzig (1970). These theories employed a quasi-static 
boundary value calculation to obtain the time-dependent reaction field. Because of 
long-ranged dipolar interactions, the reaction field contains memory of past orientations 
and this makes the relaxation non-Markovian. This leads to a non-Debye behaviour of 
the dielectric relaxation, especially at larger frequencies. Nee and Zwanzig (1970) also 
presented a non-Markovian diffusion equation for the relaxation of the orientational 
correlation function, Cl(t), and this equation is given by 

where DR(~)  is the time-dependent rotational diffusion coefficient. It is convenient to 
express the dynamical quantities as functions of the Laplace frequency, z ;  the Laplace 
transformed variable of any dynamical quantity A(t) will be denoted by &z). Equation 
(5) can then be written as 

The rotation diffusion coefficient &(z) was assumed to depend on the rotational friction 
through the Debye-Einstein relation 

where kBT is the Boltzmann constant times the temperature and ~ R ( z )  is the 
frequency-dependent rotational friction. In the continuum model studies it was further 
assumed that the frequency-dependent friction can be further decomposed into two parts 
that have different origins. That is, 

(8) 

where is the rotational viscous friction (due to Stokes law) that originates, primarily, 
from short-range angular interactions whereas t D ~ ( z )  is the friction entirely due to 
intermolecular dipolar interactions. Such as separation is usually justified by appealing 
to the long-range nature of dipolar jnteractions. The continuum model provides the 
following simple representation of cDF(z) in terms of ~ ( z ) .  

t R ( Z )  = [O + ‘!DF(z), 
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274 S. Ravichandran and B. Bagchi 

Since E(Z) itself depends on &w(z), the connection formulae need to be solved 
self-consistently . 

The continuum model based formulation of Nee and Zwanzig (1970) made several 
specific assumptions and approximations which need to be tested. It assumed a 
separation of time-scales between the decay of the single particle orientation and the 
torque-torque correlation function-the latter was assumed to decay much faster. It 
also neglected the rank (1) dependence of the dielectric friction. In an elegant application 
of the continuum mode, Hubbard and Wolynes (1978) removed the above and several 
other approximations. But the resulting theory, is still based on the continuum model 
description. 

The major limitation of the continuum model is, however, not the simplifying 
assumptions made in deriving the required analytic expressions. Rather, it is the 
assumption that the interaction between any two molecules in the liquid can be 
approximated by the continuum electrostatic prescription. This assumption leads to the 
total neglect of pair correlations. Since these correlations are expected to be important 
when two molecules are close to each other (the separation distance is comparable to 
the molecular diameter), the continuum model can lead to a totally erroneous picture 
when we consider properties that are sensitive to small distances. An example is the 
force that is acting on a tagged dipolar molecule. Here the continuum model leads to 
an erroneous estimate of the force-force autocorrelation function. 

The first systematic approach towards the formulation of a molecular theory of 
dielectric relaxation was taken by Madden and Kivelson (1982, 1984). These authors 
have contributed to many different aspects in this area and a few are summarized in 
the following. Among the most important things, a molecul& theory of dielectric 
friction was developed (Madden and Kivelson 1984), in which they give the expression 
for dielectric friction which showed a strong rank (I) dependence. Madden and 
Kivelson's (1984) simple expression for the rank dependent dielectric friction can be 
written as 

In addition their theory included, for the first time, the effects of the intermolecular 
orientational correlations in the analysis of dielectric friction. This naturally led to the 
conclusion that translational diffusion can significantly decrease the magnitude of 
dielectric friction. In addition, Madden and Kivelson (1984) developed a successful 
three-variable theory of dielectric relaxation which can be considered as a generaliza- 
tion of the earlier three-variable theory of Guillot and Bratos (1977). The study of 
dielectric relaxation has two interesting limits, one is the underdamped and the other 
one being the overdamped. A liquid is said to be in the underdamped limit when the 
orientation and the angular momentum both relaxes at comparable rates so that the 
momentum relaxation cannot be neglected, whereas in the overdamped limit the angular 
momentum relaxation is much faster and can be safely ignored. Finally, a genera1 
theorem that attempts to establish a relation between the macroscopic orientational 
relaxation time, as measured by the dielectric relaxation experiments and the single 
particle orientational relaxation, was proposed. This macremicro relation seems to be 
generally useful in the study of orientational relaxation in dipolar liquids. 
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Relaxation in dipolar systems 275 

The study of orientational relaxation in dipolar liquids has received a big boost 
recently because of the rapid advances in the study of ultra-fast solvation dynamics of 
charged species in dipolar liquids (Bagchi 1989, Maroncelli et al. 1989, Barbara and 
Jarzeba 1990, Fleming and Wolynes 1990, Bagchi and Chandra 199 1, Carter and Hynes 
1991, Raineri et al. 1992, 1993, 1994a, b, Resat et al. 1992, 1993, Maroncelli 1993, 
Alavi and Waldeck 1994, Gauduel and Rossky 1994, Hynes 1994). It was found that 
solvation of an ion and a dipole can proceed at a rate which is intimately connected with 
the rate of polarization relaxation as measured by dielectric relaxation and far infrared 
(fir) experiments. However, the situation in solvation dynamics is rather complex, as 
it requires a knowledge of not only the collective relaxation but also of the single particle 
orientational dynamics. In fact, one requires a knowledge of collective orientational 
relaxation at all length-scale (Bagchi 1989, Bagchi and Chandra 1991). Several detailed 
computer simulation stiidies have been carried out to explore the relationship between 
solvation dynamics and collective relaxation (Maroncelli 1993). 

In our laboratory at the Indian Institute of Science, Bangalore, we have developed 
a molecular theory of orientational relaxation and solvation dynamics in dipolar 
liquids-some of our early results have already been reviewed elsewhere (Bagchi 1989, 
Bagchi and Chandra 1991). Our effort was different from the earlier studies in that it 
was based on a molecular hydrodynamic description which has been very successful 
in recent years to describe the complex dynamics of supercooled atomic liquids 
(Boon and Yip 1980, Gotze and Sjogren 1987) For orientational dynamics, the 
molecular hydrodynamic approach was initiated first by Calef and Wolynes (1983). 
The main idea behind this approach is that in dense liquids, the density relaxation can 
become very slow because of the ‘cage effects’ due to the presence of strong 
orientational and spatial correlations. Therefore, a quantitative description of various 
relaxation processes may be obtained in terms of a set of extended hydrodynamic 
equations where the relaxation of momentum is described by a generalized 
Navier-Stokes equation that contains a ‘mean-field’ force term, derived from a local 
free energy functional-the latter is obtained from density functional theory (Munakata 
1978, Ramakrishnan and Yussouff 1979, Bagchi 1989). The mean-field force term is 
proportional to the fluctuating density of the liquid. The advantage of this description 
is that is easily leads to a system of linear equations that contains both the effects of 
the intermolecular orientational correlations and the dissipation. As already mentioned, 
this description, which we refer to as molecular hydrodynamic, has been quite 
successful in explaining and systematizing a large body of experimental data on 
relaxation in dense and supercooled molecular liquids (Munakata 1978, 1985, 
Ramakrishnan and Yussouff 1979, Boon and Yip 1980, Kirkpatrick 1985, Rice et al. 
1985, Gotze and Sjogren 1987, Kawasaki 1995). 

The above study revealed many interesting aspects of relaxation in dipolar liquids. 
It showed that single particle orientational relaxation can be strongly coupled to the 
collective relaxation and vice versa (Vijayadamodar et al. 1989), much in the same way 
as in the equations of relaxation for simple monatomic liquids (Boon and Yip 1980, 
Kirkpatrick 1985, Gotze and Sjogren 1987). Our study showed that the translational 
modes can greatly accelerate the decay of collective orientational relaxation at the 
intermediate wave-vectors (that is k 3 27d0, where (T is the molecular diameter) where 
the collective orientational relaxation is slow because of the presence of the 
intermolecular correlations. This in turn leads to a significant reduction in the magnitude 
of the dielectric friction experienced by a dipolar molecule (Vijayadamodar et al. 1989). 
If the equations for dielectric friction and dielectric relaxation are solved simul- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



276 S. Ravichandran and B. Bagchi 

taneously, one finds an important hidden role of the translational modes in dielectric 
relaxation-the translational modes can make the dielectric relaxation 
Debye- like (Bagchi and Chandra 1990). The theory also predicts that the single-particle 
orientation in an overdamped liquid can have a slow long-time decay which originates 
from the local orientational correlations. In the underdamped limit, the theory also 
makes several predictions that appear to be quantitatively similar to the three-variable 
theory (Guillot and Bratos 1977, Madden and Kivelson 1984, McConnel 1991). 

The molecular hydrodynamic theory has also been studied by several other groups 
(Wei and Patey 1990, Raineri and Friedman 1992) with rather similar conclusions. 

There are, however, several important concepts and issues revealed by the 
theoretical studies that are not easy to test experimentally. For example, the role of 
translational modes in the orientational relaxation or, the rank dependence of the 
dielectric friction. In order to understand these important issues, we recently camed out 
detailed computer simulation studies of orientational relaxation in a dipolar lattice 
(Zhou and Bagchi 1992, Ravichandran and Bagchi 1994a,b,c,d). Because of the 
simplicity of the system, it was possible to carry out accurate simulations. These 
simulations allowed us to address several fundamental issues, (like the rank dependence 
of dielectric friction), directly. Especially revealing has been the detailed understanding 
of the reasons behind the inadequacy of the continuum model. Recently, molecular 
dynamics simulations of the dipolar lattice has also been carried out (Ravichandran and 
Bagchi 1994 b) to understand the role of correlations in the underdamped limit of 
orientational relaxation. These results have motivated us to carry out further theoretical 
studies, detailed below. 

The broad objectives of this review are to understand and, wherever possible, to 
quantify the role of intermolecular correlations in orientational relaxation. That these 
are difficult objectives can be appreciated from the following. Theoretical studies have 
long suggested that dipolar correlations should be important and one of the signatures 
would be a marked non-exponentiality in the decay of the orientational time correlation 
functions. Thus, theories predicted that dielectric relaxation, even of a moderately polar 
dipolar liquid, should be markedly non-Debye. Experiments, on the other hand, have 
repeatedly demonstrated that most of the common dipolar liquids obey the Debye 
equation rather well. The well-known examples are water, acetonitrile, and methanol 
(Hasted et al. 1985, Barthel etal. 1990,1991, Guillot el al. 1990) (the librational modes 
at high frequency are not the kind of signatures that we are discussing here). Non-Debye 
dielectric relaxation is, of course, well-known in polymeric systems, but there again the 
origin is different. However, for dipolar liquids, the differences between the theoretical 
predictions and the experimental results are not understood. These clearly indicate that 
the existing theories are inadequate in many respects. In a recent study one reason for 
the failure of the theories has been attributed to the neglect of the translational modes 
(Bagchi and Chandra 1990). This is, of course, only a part of the story. A deeper 
understanding of orientational relaxation in dipolar liquids will require systematic 
studies by many scientists as the problem has many complicated features. In this review 
we look at a few of them by carefully comparing the computer simulation results with 
the different theoretical predictions. 

As discussed below, a simple system is chosen so that many of the complicating 
features can be eliminated. We find that one can indeed learn a great deal from such 
a study. 

The organization of the rest of the review is as follows, In section 2, we discuss 
single-particle orientational relaxation and dielectric friction. In section 3 we consider 
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Relaxation in dipolar systems 271 

the collective orientational relaxation and dielectric function. In section 4 a brief 
discussion on solvation dynamics is given. In section 5 the relation between the 
single-particle and the collective memory function has been presented. In section 6 we 
present the theoretical work on orientational caging using the molecular hydrodynamic 
theory. Section 7 concludes with a discussion of the results and our current status of 
understanding of orientational relaxation. 

2. Single particle orientation and dielectric friction 
Because the dipolar liquids often consist of molecules of rather complicated shapes, 

the understanding of the details of orientational motion of these molecules is a difficult 
task. Recently hydrodynamic calculations of rotational friction were done with realistic 
shapes of non-polar molecules (instead of approximating them as spheres or ellipsoids) 
and the results were quite satisfactory (Fleming 1986, Bagchi 1994). This gives the hope 
that we are probably not too far from getting a reliable hydrodynamic theory of 
rotational motion for non-polar molecules of complex shapes. The situation, however, 
is far less satisfactory for polar molecules. Here most of the calculations are still 
concerned with spherical molecules with point charges or point dipoles located at the 
centre of a sphere (with the exception of the work of Waldeck and coworkers 
(Alavi and Waldeck 1994) that we shall discuss later). Unfortunately, even for such 
simple model situations, our understanding, is not precise. 

In this section, we shall review the most recent advances that have taken place in 
this field. Specifically, we want to focus on some key concepts which has existed, but 
not tested rigorously in the past. 

2.1. Test of the continuum models 
As discussed in the introduction, initial studies of the single-particle orientational 

relaxation were based on the continuum model, which consists of the following four 
ingredients. First, one assumes a relation between the correlation function Cl(z) and 
the diffusion coefficient &(z), as given by equation (6) .  This is the generalized 
diffusion equation result. Second, a partition of the total rotational friction into a 
short-range friction (due to viscysity), &,, and a frequency dependent friction due to 
long-range dipolar interactions, [ D ~ z ) ,  is made, as given by equation (8). Third, the 
continuum model is used to express CD&) in terms of ~ ( z ) ,  already given by equation 
(9). And lastly, a continuum model relation is derived between E(Z) and c,(z). This 
expression is given by 

when 9 denotes a Laplace transformation with respect to time with frequency z as the 
conjugate Laplace frequency. Since C, ( t )  is already given by the generalized diffusion 
equation, we can now solve all the equations self-consistently to obtain both E(Z) and 
[DF(z)-the two intermediate key quantities. Our reason for discussing the above steps 
in detail is to emphasize the assumptions that form the backbone of the continuum mode. 
Note that any one of these assumptions is not easily verifiable; even the experimental 
test of the overall prediction is difficult. In fact, a clear indication of the inadequacy 
has come only recently through the extensive work on solvation dynamics, (Bagchi 
1989, Maroncelli et al. 1989, Barbara and Jarzeba 1990, Fleming and Wolynes 1990, 
Ragchi and Chandra 199 1, Raineri et al. 1992, 1993, 1994a, b, Maroncelli 1993, Alavi 
and Waldeck 1994, Bagchi and Roy 1994, Hynes 1994). Even then it is not all obvious 
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which of the above assumptions (if not all) are responsible for the breakdown of the 
continuum model. This is important because one does not expect the generalized 
diffusion equation to be seriously in error in the overdamped limit. So, we are left with 
the following alternatives, either equation (9) or equation (1 1) is in error, or even both 
may be erroneous. 

In order to answer the above questions, detailed computer simulation studies of 
Brownian orientational dynamics of a dipolar lattice has been carried out (Papazyan and 
Maroncelli 1991, Zhou and Bagchi 1992, Zhou et al. 1992). In this system, the point 
dipoles are fixed at the sites of a simple cubic lattice. These dipoles interact through 
the usual dipole-dipole potential (Allen and Tildesley 1987), given by equation (4) of 
this review. The dipoles are free to undergo rotational Brownian motion in the force 
field of all other dipoles of the system. The dynamics in this simple model is described 
essentially by only one dimensionless parameter (or polarity) 7 = p0&3k~T, where PO 
is the number density of the system and p, the magnitude of the dipole moment of a 
molecule. 

The merit of simulating the Brownian dipolar lattice is that the separation of the total 
friction into a bare and dielectric ([DF) component is built into the system, 50 being 
supplied from outside. In addition, the system is in the overdamped limit which is also 
the usual assumption of the continuum limit. Another advantage is that we can test the 
assumptions of the continuum model part by part, supplying simulated functions 
whenever necessary. Another advantage of this simple model is that a perturbative 
treatment of both the single-particle and collective dynamics can be carried out using 

as the.smallness parameter. This perturbative treatment was first carried out by 
Zwanzig (1963) and was further studied by several workers (Loring and Mukamell987, 
Zhou and Bagchi 1992, Roy and Bagchi 1994). 

The equation of motion for the Brownian dynamics simulations can be conveniently 
written in the form of a first-order differential equation for its angular velocity (a).  

(12) 

The random angular velocity is denoted by o. DR and o are related by the 
fluctuation-dissipation theorem 

a = pDRTs(a) + w(t). 

where DR is the rotational diffusion coefficient and p is ( k B T ' - '  and T , ( a )  is the 
systematic angular torque. 

Simulations have been performed with 257 and 515 dipoles. The trend for the 
reorientational correlation functions obtained from 515 dipoles is almost the same as 
that of 257 dipole system. This results discussed in this review correspond only to 257 
dipole system. 

As expected, the single-particle orientational correlation function unlike the 
collective correlation function, has a weaker size dependence. So, mostly, 
the single-particle orientational correlation function was calculated by following the 
trajectory of the central dipole in the system, in some cases, averaging has been done 
over the six nearest neighbouring sites of the central dipole for better statistics. 
Simulations have been performed at four different polarities (7 = (1/12), (1/6) (1/3), 
(U2)). The time step of the simulation was chosen to be equal to 0.01 DRt. Equilibration 
was done over a time 4 X lo5 DRt and the averages have been collected over an interval 
of 6 X 1 6 D ~ t .  
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Relaxation in dipolar systems 279 

The values of the static dielectric constant (G,) for the four polarities q = (1/12), 
(1/6), (1/3), (112) are 2.5, 4-9, 12-0, and 19.0, respectively (Zhou et al. 1992). The 
required values of ZD can be obtained from the integral of the simulated collective 
dipolar time correlation function. The collective moment was nearly exponential 
(and ~ ( w )  Debye-like) till q = 1/3. And the deviation from exponentiality was not very 
large till q = 1/2 the latter is the highest polarity studied in this work. The values of TD 
for the four polarities were ZD = 0.7 DR for q = 1/6, 
z ~ = 1 - 5 D < ’  forq=1/3andzD=1-85DG forq=1/5 (Zhouetal. 1992). 

The dielectric friction on the orientationaly fixed central dipole can be calculated 
using the expression (Hubbard and Wolynes 1978, Madden and Kivelson 1982, Madden 
and Kivelson 1984) 

for q = 1/12, TD = 1.0 D i  

where Cd t  is the torque-torque correlation function 

Cdt) = (Nl(O)N(t)), 

and Nl’s are the time dependent fluctuating torques acting on :-.e central dipole. The 
calculated dielectric friction has been used later in the theories considered for 
comparison with the simulation. The correlation time (TI) defines the effective 
coefficient (D:) through the following relation: 

1 1  De--- 
1(1+ 1) 7,’ 1 -  

with 

Table 1. Effective diffusion coefficients from the Brownian dynamics simulations and from 
the theories at different polarities. 

v 0; Db De3 0; L2 Dl 

NZ 
HW 

1/12 MK 
SrMUL 

NZ 
Hw 

1 16 MK 
SIMUL 

NZ 
HW 

1 /3 MK 
SIMUL 

NZ 
HW 

112 MK 
SIMUL 

0.826 
0.899 
0.861 
0-89 1 

0.635 
0.768 
0.690 
0.700 

0.452 
0.622 
0.506 
0.400 

0.382 
0.540 
0.43 1 
0.179 

0.826 0.826 
0.914 0-941 
0.920 0.954 
0-930 0-958 

0.635 0.635 
0.799 0.852 
0.799 0.869 
0.810 0.887 

0.452 0.452 
0.664 0.730 
0.631 0.719 
0-574 0-656 

0.382 0-382 
0-584 0-651 
0.550 0.634 
0.316 0.455 

0.826 
0-960 
0.97 1 
0.972 

0-635 
0-893 
0.9 12 
0-9 16 

0.452 
0-790 
0.787 
0-746 

0.382 
0.7 18 
0-706 
0.526 

0-826 
0-97 1 
0.979 
0.980 

0.635 
0.922 
0.938 
0.933 

0.452 
0.837 
0.837 
0.794 

0.382 
0-774 
0.765 
0.641 

0.826 
0.978 
0-986 
0.992 

0.635 
0.94 1 
0.954 
0-940 

0-452 
0.872 
0.873 
0.82 1 

0-382 
0-818 
0-81 1 
0-700 
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Figure I .  A comparison of the single-particle orientational correlation function from the 
Brownian dynamics sirnulation (solid curve) and from the generalized diffusion equation 
(dashed curves) using the dielectric friction from the Brownian dynamics simulation: 
(a) q = 0.083: (b) = 0.3333: and (c) q = 0-48. Note that the time is scaled by ZO. 

The calculated values of the effective diffusion coefficients from the simulation are 
reported in table 1. 

Next the results of the simulations are briefly discussed and compared with the 
continuum models and with the perturbative calculation. 

We shall discuss first the validity of the continuum model expressions of the 
torque-torque correlation function (Cdr)). In this comparison, the simulated dielectric 
function has been used so that one can test the accuracy of the form only, without any 
probable drawback from any approximate dielectric function. The simulation results 
show that the generalized diffusion equation (GDE) is rather accurate, as depicted in 
figure 1-the agreement is particularly good at low polarities. Note that here the 
dielectric friction is taken from simulation directly, so that we are strictly comparing 
the validity of GDE. Figure 2 shows the comparison between the continuum model 
prediction and the simulated Cdt) .  The continuum model predicts a much faster decay 
of C d t )  leads to an almost Debye like E(O) in the continuum model. 

The effective medium relation between Cl(t) and E ( Z )  has also been tested. This has 
been done by using simulated E(z) in the left hand side of equation (1 1). The comparison 
is shown in figure 3. Again, the continuum model theory fares badly. 

Thus, the Brownian dynamics simulations of the dipolar lattice reveal the main 
limitations of the continuum mode. They show that both the effective medium 
expressions for Cdr) and ~ ( z )  are inadequate even at moderate polarities. On the other 
hand, the generalized diffusion equation seems to fare well when a proper dielectric 
friction is supplied from outside. It is especially heartening to see that the slow decay 
of C,(t)  is reproduced by the GDE. 

For the Brownian lattice model, a simple perturbative expression for the 
orientational correlation function can be derived by using Zwanzig’s projection 
operator technique. This expression, as a function of Laplace frequency z, is given by 
(Zhou and Bagchi 1992) 

(18) 
1 

G(Z) = 
z + (l/.o){ 1 +Rl$[(l + zoz)-’ ++(4 + zoz)-’]] - l’  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Relaxation in dipolar systems 28 1 

Figure 2. A comparison of the torque-torque correlation function from the Brownian dynamics 
simulation (solid curve) and from the continuum model (dashed curve) at q = 0.3333. 
The time is scaled by TO. 

0.8 

0.4 

0 
0 0 16 

f i b  

Figure 3. A comparison of the single-particle orientational correlation function from the 
Brownian dynamics simulation (solid curves) and from the effective-medium relation of 
the continuum model (dashed curves) using the dielectric function from the Brownian 
dynamics simulation: (a) q = 0-0833 and (b)  q = 0-3333. The time is scaled by xo. 

where R1 is an unaveraged lattice sum at site 1, equal to 1 J3 1: GI,  Tv is the usual dipole 
dyadic tensor and zo = ( 2 0 ~ ) ~ ' .  This expression is exact to the order of y1'. This fully 
microscopic expression agrees very well with the simulated results at low polarities, 
but fails to describe the slow long-time decay that develops at higher polarities, which 
is not surprising. 

The perturbative treatment can also be used to understand the dielectric friction. 
Equation ( 18) gives the following expression for &,&) 

GE9 = R1q',( 1 + zgz) - + +(4 + za)  - '1, (19) 
5 0  
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282 S. Ravichandran and B. Bagchi 

where R1 is a lattice sum. The Nee-Zwanzig continuum model, on the other hand, gives 
the following expression 

For an infinite system, R1 = 16.8, whereas 16 x2/3 = 52-6. Thus, the continuum model 
predicts a value that is about three times larger than the perturbative treatment at all 
frequencies. 

In section 5 ,  we shall discuss a fully microscopic calculation of Cl(t). This 
microscopic calculation based on a molecular hydrodynamic theory (Bagchi and 
Chandra 1991), provides a satisfactory description of orientational dynamics in the 
dipolar lattice. 

2.2. Rank dependence of the dielectric friction 
We next address the question of rank (I) dependence of the orientational relaxation 

in general and of dielectric friction in particular. According to Debye theory (1929), 
the rotational diffusion correlation functions Cf(t) decay exponentially with a rate equal 
to l(1 + 1)& and that the rotational diffusion coefficient has no dependence on the rank 
1. The generalized diffusion equation (equations ( 5 )  or (6)) makes the same assumption. 
Thus, the treatment of Nee and Zwanzig (NZ) (1970) totally neglected the rank 
dependence. It was Hubbard and Wolynes (1978) who first suggested that the 
rank dependence can be rather important in dipolar liquids afid should decrease with 
I for the following simple reason. As the rank I increases, the relaxation of C,(t)  becomes 
faster and the frictional retardation of the orientation motion due to dipolar interactions 
become less significant. This effect is particularly important in dipolar liquids because 
of the long-range nature of dipolar interactions which make the dielectric friction 
frequency dependent. Madden and Kivelson (1982) has also addressed the issue of rank 
dependence by using the Mori hierarchy (Boon and Yip 1980). Their expression for 
dielectric friction predicts a strong, rank I dependence of the dielectric friction, which 
decreases with increasing 1. 

From a practical point of view, this I dependence of dielectric friction can be useful 
to understand the difference between various correlation functions that are routinely 
measured in experiments. For example, I =  1 correlation function is accessible by 
dielectric relaxation measurements, whereas I = 2 function is measured by fluorescence 
depolarization, Raman and Kerr relaxation experiments. This intrinsic rank dependence 
of dielectric friction is sometimes ignored and the expression for 1 = 1 is used to interpret 
experiments that probe only the I =  2 correlation function (Dutt et al. 1991). 
An interesting example of the use of information from an I = 2 experiments to explain 
the results of an 1 = 1 level experiment is the ion solvation dynamics in acetonitrile 
(Cho et al. 1992)-the latter has been explained (Bagchi and Roy 1993, Roy et al. 1993) 
by using the Kerr relaxation data of Lotshaw and McMorrow (1991). However, such 
applications require a detailed understanding of the rank dependence of rotational 
friction. 

Brownian dynamics lattice simulations show conclusively that the dielectric friction 
decreases rapidly with the rank I. This is shown in figure 4. These results are in 
qualitative agreement with the predictions of Hubbard and Wolynes (HW) (1 978) and 
also of Madden and Kivelson (MK) (1982). In table 1, a comparison between the 
simulations and the various theories is shown for the rank dependent effective diffusion 
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Figure 4. Values of the dielectric friction ([DF,I(z = 0)) obtained from the Brownian dynamics 

simulation plotted against polarity for different ranks. Note the above values of dielectric 
friction are scaled by the bare friction, lo. 

coefficient, 09 = k ~ T / c ~  + &,F,I). The theories of Hubbard and Wolynes (1978) and of 
Madden and Kivelson (1982) agree rather well with the simulation at low polarities; 
the predictions of the latter fare somewhat better. However, these theories seem to break 
down at higher polarities. The better agreement of Madden and Kivelson (1982) may 
be because this theory includes both the longitudinal and the transverse modes correctly, 
whereas only a composite rate is used in the theory of Hubbard and Wolynes (1978). 
The inadequacy of the molecular theory of Madden and Kivelson (1982) at high 
polarities is not well-understood at present, but may be partly due to the neglect of 
short-range intermolecular orientational correlations which are known to contribute 
significantly to dielectric friction (Vijayadamodar et al. 1989, Bagchi and Chandra 
1990). This is a problem which requires a better understanding. 

The observed rank dependence of dielectric friction certainly raises several 
questions-how important is this dependence for experimental situations? In order to 
answer this question further study is certainly required (and some will be detailed 
below), but it can be safely said that for nearly spherical and slow aprotic liquids like 
propylene carbonate and methyl iodide, this effect is expected to be non-negligible. 
This is because in the overdamped limit the magnitude of the dielectric friction scales 
with the short-range friction, 50. 

Let us now discuss a few important points of experimental interest regarding the 
rank dependence. The rotational diffusion model (which is valid when diffusion occurs 
by small jumps) predicts that T I / T ~  = 3, where 71 is the relaxation time of lth order 
spherical harmonic Yr,[Q(t)]. However, if the reorientation occurs by random long 
jumps, then the prediction is that zl/zz = 1 (Kivelson and Miles 1988, Kivelson and 
Kivelson 1989). The ratio of T,/Q is taken as an indication of the nature of the 
orientational dynamics. There are, however, several complications for slow dipolar 
liquids. First, the rotational diffusion coefficient itself can depend on the rank I due to 
the non-Markovian effects mentioned above (Hubbard and Wolynes 1978, Ravichan- 
dran and Bagchi 1994a). This may give z l / z ~  > 3. That this can really happen is shown 
in table 2 where this ratio, calculated via the same Brownian dynamics simulation 
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284 S. Ravichandran and B. Bagchi 

Table 2. The values of the relaxation time zl and 7 2  (defined by equation (17)) as a function 
of the polarity ( q - p 2 p d 3 k ~ T )  of the medium. We have also shown the ratio 71/52 in the last 
column. 

vl €0 7 D  71 7 2  7 1 / 7 2  

1/12 2.5 1-4 0.56 0.179 3.13 
113 12.0 3.0 1-25 0.290 4-31 
112 19.0 3-7 2.79 0.527 5.29 

(as discussed above) is presented. Note that the ratio can be significantly higher than 
3 at high polarities. This is because the first-rank correlation function undergoes a 
relatively larger slowing down, due to the dipolar interactions, than the second-rank 
correlation function. This is a clear manifestation of the rank dependence of the 
dielectric friction. 

However, experimentally one does seem to find values of 7 1 / z 2  which range between 
3 and 1 (Gerschel 1984). In dense liquids, the rotation will certainly have a certain 
amount of small jump character-the situation can be different in the rigid medium. 
Thus, this appears to be a puzzling contradiction which we now address, although 
somewhat qualitatively. 

There is one aspect of orientational relaxation which appears to have been 
overlooked in the past discussions on the ratio 2 1 / 2 2 .  This is the fact that Cl(t) is not 
directly available, and a measure of is usually taken from the dielectric relaxation 
time rD (Gerschel 1984)-although it has been pointed out that these two can be rather 
different (Maden and Kivelson 1984, Bagchi and Chandra 1991). Thus, in slow liquids, 
one should really compare Cl(t) with Cz(t). In the absence of such comparison, one must 
understand the relation between 21 and ZD. This is again difficult because Cl(t) can be 
non-exponential while dielectric relaxation can also be non-deb ye. We can, therefore, 
compare only the average relaxation times, (q), with an assumed Debye-like relaxation 
of ~(z).  Computer simulations indicate that in the absence of the translational modes, 
( T I )  can be larger than T D  (see table 2). We then have the following inequalities, 

Therefore, we may have the following scenario. For diffusive motion, 21/22 can be 
significantly larger than 3, but z d r 2  can still be close to 3. Thus, replacing 21 by TD may 
lead to wrong conclusion about the validity of the rotational diffusion model. The 
situation can be simpler at temperatures much above the freezinglmelting point where 
the assumption 21 --- ZD may still be valid. 

2.3. Relaxation in the underdamped limit 
We next address an entirely different question on dielectric friction. What is the 

magnitude of this friction in the underdamped limit? This question is of considerable 
current interest because of the effort of relating the results of ultra-fast solvation 
dynamics experiments with the molecular relaxation observed by the optical Ken- effect 
(Cho et al. 1992, 1993, Roy et al. 1993). While solvation dynamics probes essentially 
the I = 1 orientational relaxation, the Kerr relaxation probes a complex dynamics which 
involve primarily I = 2 in the short time, although it may also contain certain amount 
of 1 = 1 contribution. Thus, it is important to understand this rank dependence in an 
underdamped liquid also. 
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In fact, the rank dependence of the orientational relaxation in the underdamped limit 
was studied by Fixman and Rider (1969) many years ago for an entirely different 
model-the model studied by them was a collisional Boltzmann equation. Fixman and 
Rider made an interesting prediction that while C,(t) may exhibit diffusive dynamics 
after a transient Gaussian decay, the second and higher-rank correlation functions may 
not exhibit any diffusive dynamics at all. That is, the decay of these correlation functions 
will be entirely Gaussian. This rather surprising prediction can be partly understood in 
terms of the rate of relaxation of these functions as we discussed earlier. The higher 
the rank of the correlation functions, the faster is the decay and the less is the frictional 
resistance from collisions. 

A full molecular dynamics simulations of orientational relaxation in a dipolar lattice 
has recently been carried out (Ravichandran and Bagchi 1994b) to understand the role 
of dipolar interactions in the underdamped limit and also to verify the prediction of 
Fixman and Rider (1969). 

A major motivation to study the problem of orientational relaxation using molecular 
dynamics simulations comes from the recent discovery of the Gaussian component in 
the solvation dynamics of an ion or a dipole in a polar liquid (Rosenthal et al. 1991). 
The understanding of this inertia-dominated solvation requires an understanding of the 
effects of dipolar interactions on both the collective and the single-particle orientational 
relaxation in the inertial limit. A particularly relevant question here is the relation 
between the Cl(t)  and the C2(t), as they partly reveal the connection between the 
dielectric and Kerr relaxation respectively (Roy and Bagchi 1993a, b, c). Another 
motivation is to understand the role of dielectric friction in the underdamped rotation 
of small molecules (Nakahara and Wakai 1992). Again these simulations also have been 
used to check the validity of the continuum models and to enhance our understanding 
in this area. 

We briefly summarize below the technical details of the molecular dynamics (MD) 
simulations. A MD code has been developed for a system of rigid point dipolar cubic 
lattice (as discussed in Brownian dynamics simulations) with the centres of mass of the 
dipoles held fixed on the lattice sites. The dipoles interact through the dipole-dipole 
potential (see equation (4)). 

The natural units of the present simulations are the length unit, a (the lattice 
constant), the energy unit, A and the time unit, 70. The latter two quantities are defined 
as follows 

A = p2/3a3, and 70 = (IIA)'", 

I being the moment of inertia of a dipole. Thus, the dimensionless reduced time, 
temperature and energy are given by 

t" = t / ~ o ,  T* = kaT/A, U * = (W)/NA, 

where ( W )  is the mean value of the total energy of the system, U *  is the energy per 
dipole and N is the total number of dipoles in the simulation system. Also note that T* 
is inversely proportional to the polarity parameter y ~ ,  which has been used in earlier 
studies (Papazyan and Maroncelli 1991, Zhou and Bagchi 1992, Ravichandran 
1994a, b, c, Ravichandran et al. 1994). Note that all the results of molecular dynamics 
simulations presented in this review are expressed in terms of the reduced variables. 

To check the system size dependence on the calculated quantities, a run was 
performed with N = 5 15 dipoles at T * = 2.0. As there was no significant difference in 
results between the 257 and 5 15 systems, calculations were continued on a 257 dipole 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



286 S. Ravichandran and B. Bagchi 

h c v 

0' 

3 

- T'=2 
- - - -  ~ ' ~ 2 . 5  

T'=3 

0.0 0.5 1.0 1.5 2.0 

t' 
Figure 5. (a)  The simulated (MD) single-particle orientational correlation function for 

1 = 1,  Cl(z)) is plotted against time at three different temperatures (P = 2.0, 2.5, 3.0). 
Note that the time is expressed in reduced units. (See section: 2.3. for details). 
(b) The simulated single-particle orientational correlation function for 1 = 2 (C2(r)) at three 
different temperatures. Note that the time is expressed in reduced units. (See section: 2.3. 
for more details). 

system. Note that we are interested in the single-particle relaxation properties. Since 
this particle is chosen to be at the centre of the system, results converge easily and do 
not show any appreciable size dependence. In order to improve the statistics in the long 
time, averages were sometimes performed over the six dipoles that are nearest 
neighbours to the central dipole. 

The rotational equations of motion were solved numerically by the leap-frog method 
proposed by Fincham (1981) with an integration time step of Ar* = 0-00125. 
Calculations were carried out at three different temperatures (T* = 2-0, 2.5, 3-0). 
Starting with random initial orientations of the dipoles, the system was equilibrated for 
2 X lo6 At* and averages were collected over 4 X lo6 time steps at each temperature. 
For calculating the orientational correlation functions, a time length of 4 X lo6 time 
steps have been used. 

The dielectric friction on the orientationally fixed central dipole has been calculated 
using the relation (Nee and Zwanzig 1970, Hubbard and Wolynes 1978) given in 
equation (14) and (15). The calculated dielectric friction has been used later to obtain 
the C,(r)'s from the memory function formalism, which will be discussed later in this 
section. 

The rotational diffusion constant (DR), defined by 

has been calculated. Here o ( t ) ' s  are the angular velocities. The calculated values of 
the rotational diffusion coefficient, DR for T* = 2-0, 2.5, 3-0 are 0.3563, 0-5480 and 
0.8393, respectively. 

In figure 5, the calculated single-particle orientational correlation functions for both 
I =  1 and Z=2 at three different temperatures are shown. While Cl(t) exhibits a 
transition from a fast Gaussian-like to a slow exponential-like decay, the higher-rank 
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1 .o 
- PRESENT SIMULATION 

0 
i 

Figure 6. Single-particle orientational correlations obtained from the simulations are compared 
with the Lynden-Bell's cumulant expansion (CE-LB) and the memory function at 
temperature T* = 2.0. Note that the time and temperahire are expressed in reduced units. 
(see section: 2.3. for more details). 

correlation functions remain almost Gaussian throughout-in agreement with the 
prediction of Fixman and Rider (1969). The long-time tail indicates the importance of 
dielectric friction. The above results can be easily understood as follows. As the rank 
( I )  increases, the decay becomes faster. Consequently, the relevant friction that could 
retard the relaxation of Cl (t)  for higher 1 is only the high-frequency component of $&). 
However, the value of this friction is small at large frequency and so is the role of 
dielectric friction for large Z's. This explains why the decay of G ( t )  for 1 Z 2 is mostly 
Gaussian---only the decay of 1 = 1 correlation function is sufficiently slow to face a large 
dielectric friction to make its decay diffusive. In the present case, the diffusion should 
really be described as a continuous time random walk (CTRW) for Cl(t). Note that the 
diffusive decay of C,(t) sets in the long time. Thus, if one wants to coarse grain 
the dynamics to find the underlying CTRW, the jumps would be rather long. Therefore, 
for this model, dynamics can be described by small jumps only for I = 1 reorientation 
and not for 1 3  2 reorientations (Kivelson and Miles 1988). 

Theoretical description of the short-time relaxation is usually simpler than that of 
the long-time part because simple expansion around t = O  is often satisfactory. 
Lynden-Bell (1984) has derived a rather elegant expression for Cl(t) by using the 
cumulant expansion technique. This expression is given by 

In Cl(t) = - Z(l+ 1)(0:) dz(t - z)C,(z), I 
where (a,') is the x-component of the mean square angular velocity and.C,(t) is the 
angular velocity correlation function. Since C,(t) can be obtained from the molecular 
dynamics simulation, a complete test of equation (22) can be carried out. Such a 
comparison is shown for Cl(t) in figure 6 which reveals that the cumulant expansion 
provides a satisfactory description of the relaxation at short times, but fails to capture 
the slow long-time decay of Ci(t). This is, of course, expected. 
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An alternative approach that is commonly employed is to use the following memory 
function expression for Cl(t) 

Since ~ D F ( Z )  can be calculated directly from the molecular dynamics simulation, we can 
test equation (23) .  Figure 6 shows this comparison also. The short-time agreement is 
again good, but the long-time behaviour of equation (23) is wrong. This is somewhat 
surprising as we expected the memory function to provide a reasonable description in 
the long time, unlike the cumulant expansion which is restricted by definition to 
short-time dynamics. 

The failure of the memory function description of underdamped relaxation at large 
polarities seem to have come from a fundamental drawback of such descriptions. 
In order to understand this drawback, let us first recall that in order to derive a simple 
memory function expression like equation (23),  one needs to assume that the only slow 
collective variables are the density and the angular momentum of the tagged molecule. 
In a dense dipolar liquid, there are other slow collective variables are the density and 
the angular momentum of the tagged molecule. In a dense dipolar liquid, there are other 
slow collective variables, which are coupled to the single-particle relaxation. Therefore, 
one must extend the set of slow variables to include the collective hydrodynamic modes 
also. Such coupling between single-particle and collective dynamical variables is 
well-known in atomic liquids (Boon and Yip 1980, Hansen and McDonald 1986), but 
it has not been adequately addressed in the case of molecularliquids. When this coupling 
is included, the resulting expression for the single-particle orientational correlation 
function has an additional contribution, which has a structure (Bagchi, unpublished 
work) similar to the ones familiar in mode-coupling theory (Boon and Yip 1980). 
Although a detailed analysis of this approach has yet to be carried out, the observed 
slow decay of Cl(t)  may be attributed, at least partly, to the mode-coupling effects. 

Since the initial decay of the single-particle reorientational correlation functions are 
Gaussian, a good measure of the rate of decay is given by the time correlation function 
(Cr(t)) to fall to (lle) of its initial value. These decay times can be defined as q(l/e). 
In table 3, the decay times for the simulation are presented along with those of the two 
theories mentioned above (Lynden-Bell and the conventionaI memory function 
approach). It is clearly seen from the table that the decay times of the molecular 
dynamics simulation varies approximately as [Z(Z - 1)]1'2, which is expected on trivial 
grounds. This indicates that the rank dependence of dielectric friction is of little 
significance at short times. This is strikingly different from the observation in the 
overdamped limit (Ravichandran and Bagchi 1994a, c). 

3. Collective dynamics: dielectric relaxation 
Dielectric relaxation is the study of the time dependence of the total dipole moment 

correlation function. The total moment of the system is the sum over the dipole moments 
of all the molecules of the system. This is equal to the long wavelength (that is, the k = 0) 
limit of the polarization. Hence, one expects that the dielectric relaxation can be 
described by using a molecular hydrodynamic approach (Bagchi and Chandra 1991). 

Traditionally, dielectric relaxation has been studied in the two extreme limits of very 
fast and vefy slow momentum relaxation-the former is referred to as the underdamped 
and the latter as the overdamped limits of relaxation. It is rather amusing to note that 
these studies proceeded quite independently of each other and except perhaps in the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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Table 3. The values of TI (l/e) (which is the time taken for CI ( t )  to fall to 1 / e )  from the molecular 
dynamics simulation (Simul) and from the theories at three different reduced temperatures. 
(T* is defined in section 2.3. of the text). 

71 (I/e) 

T* I Simul CE-LB MFE 

1 
2 2  

3 
4 

1 
2.5 2 

3 
4 

1 
3.0 2 

3 
4 

0.61 3 
0.299 
0.2 19 
0.167 

0.515 
0.278 
0.201 
0.151 

0-446 
0.246 
0.1 82 
0.143 

0.677 
0.327 
0-223 
0.170 

0-558 
0.290 
0.200 
0.149 

0.49 1 
0.258 
0- 183 
0.150 

0.564 
0.285 
0.194 
0.152 

0.469 
0.250 
0.174 
0.134 

0.4 16 
0.227 
0.156 
0.129 

work of Madden and Kivelson (1984), hardly any attempt has been made in the past 
to treat them in a unified way. The overdamped limit was treated, following the original 
treatment of Debye, by using the diffusion equation approach: On the other hand, the 
dielectric relaxation in the underdamped limit was assumed to occur by individual 
motion of independent dipolar molecules, that is, the collective effects were usually 
ignored. In this review, we briefly describe some of the recent work (Bagchi and 
Chandra 1990, Zhou and Bagchi 1992, Bagchi and Chandra 1993) on dielectric 
relaxation in both the limits. 

When the effects of intemolecular interactions are included consistently, the 
molecular hydrodynamic theory predicts a surprisingly rich dielectric behaviour. 
The most notable among them is perhaps the ‘hidden’ role of the translational modes 
in making the dielectric relaxation Debye-like. Another important finding is the notable 
role of intermolecular interactions even in the underdamped dielectric relaxation. 

In figure 7 we show theoretically predicted dielectric relaxation behaviour presented 
in a Cole-Cole plot (where the imaginary part of the frequency dependent dielectric 
function is plotted against the real part) for various values of a dimensionless dynamic 
quantity p = DT/(2DRc?) where DT and DR are the translational and rotational diffusion 
coefficients of the liquid and o is the molecular diameter. The parameter, p is a measure 
of the relative contribution of the translational modes to the collective orientational 
relaxation. The predicted dielectric relaxation (Bagchi and Chandra 1990) is markedly 
non-Debye in the absence of the translational modes of the liquid but it becomes 
Debye-like in the presence of a significant translational contribution. However, these 
results are somewhat biased towards non-exponential decay because the collective 
rotational dissipative kernel was replaced by the single-particle rotational friction. 
In order to further understand the role of intermolecular correlations, we investigated 
the dielectric relaxation of a Brownian dipolar lattice (Zhou and Bagchi 1992) where 
the dipoles are fixed in the lattice sites (therefore, the translational modes are absent) 
but allowed to undergo rotational Brownian motion while interacting with all the other 
dipoles of the lattice. It was found that the time dependence of the total moment 
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Figure 7. The Cole-Cole plot of the frequency dependent dielectric function, ~ ( w ) .  In this plot 
the imaginary part, E))(o), of the dielectric function is plotted against the real part, ~ ' ( w ) .  
The Cole-Cole plot is shown for several values of the dimensionless parameter 
p( = DT/2DRa2), where DT and DR are the translational and rotational diffusion constants 
of the dipolar liquid. The dashed curve is for p = 0 which means translational motion of 
the liquid molecules are frozen. Curves marked (1) and (2) are forp equal to 0.05 and 0.25, 
respectively. The values of the static dielectric constant and reduced density are equal to 
18 and 0-8, respectively. It can be seen from this figure that dielectric relaxation can be 
strongly non-Debye in the absence of the translational contribution, but may become 
Debye-like when translational contribution is significant. This figure is taken from Bagchi 
and Chandra (1990). 

correlation function was again non-exponential with a slow long-time decay in 
agreement with the theory (Bagchi and Chandra 1990) where it was suggested to arise 
from the nearest-neighbour interaction. However, the effect was smaller than predicted 
by the theory. 

In order to understand why the translational modes reduce the effects of local 
correlations, we have to understand the length dependence of orientational correlations. 
In the presence of strong onentational correlations among the nearest-neighbour 
molecules, the orientational relaxation of individual molecules slows down because of 
increased dielectric friction-the latter draws a large contribution from the nearest- 
neighbour molecules. However, if the molecules have large translational mobility, then 
the effects of the nearest-neighbour correlations decrease because translational motion 
is particularly effective in accelerating the rates of molecular length-scale density 
relaxation (Bagchi 1989, Bagchi and Chandra 1990, Bagchi and Chandra 1991). This 
in turn reduces the magnitude of the dielectric friction. 

In the underdamped limit, the theoretical description is somewhat simpler because 
only the short-time behaviour of the dissipative kernels are required. Since the 
short-time behaviour is dominated by the static, intermolecular correlations, it is 
straight-forward to calculate this behaviour (Boon and Yip 1980), Note that in many 
earlier treatments of the high-frequency dielectric relaxation, only the single-particle 
rotational contributions were considered-the collective effects were left out. The role 
of these collective effects were made clear recently by Nitzan and coworkers (Neria 
et al. 1991, Neria and Nitzan 1992) who presented a detailed computer simulation of 
dielectric relaxation in model Stockmayer liquid (where molecules interact via a 
Lennard-Jones plus a point dipolar interaction) (Payne et al. 1993). This liquid can be 
in the extreme underdamped limit of momentum relaxation because dipolar interactions 
provide the only frictional resistance to the rotational motion. It was observed that the 
initial relaxation of the total dipole moment was a Gaussian function of time, as 
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time (ps) 

Figure 8. Comparison between the calculated total moment correlation function, CM(t) 
(solid line) and the simulated function (Neria et al. ) (squares) for the model Stockmayer 
liquid. The translational parameter used is p = 0.038. The details of the parameters used 
are as follows. Reduced density, p*( = po3) = 0.81, reduced dipole moment, p* 
( = p 2 / k ~ T o 3 )  = 1.32, reduced temperature P( = k ~ T / e )  = 1-23 and reduced moment of 
inertia, I*( = Z/mo’) = 0-038. Here o is molecular diameter, m is the mass of the solvent 
molecule, and E is the usual Lennard-Jones energy parameter. Note that no adjustable 
parameter has been used to calculate the theoretical curve. The calculational steps have 
been discussed in detail by Bagchi and Chandra (1992). 

expected, but at a rate which was significantly different from the free inertial decay. 
The observed relaxation behaviour can be explained very well from the molecular 
theory (Bagchi and Chandra 1993). In figure 8 we show the agreement between the 
theory and simulation results for the time dependence of the total moment correlation 
function. The agreement is excellent. As discussed in Bagchi and Chandra (1993), such 
good agreement is possible because it is the free energy, rather than the dissipative 
kernel, that determines collective orientational relaxation in the short time. Therefore, 
it is the static equilibrium pair correlations, rather than the dynamics, that determine 
the initial decay. 

A question that has been repeatedly asked in the problem of underdamped dielectric 
relaxation is the existence of collective excitations in the polarization relaxation (Lobo 
et al. 1973, Ascarelli 1976, madden and Kivelson 1984, Bagchi and Chandra 1990). 
The moIecular theory predicts that such collective excitations are more likely to be 
observed in experiments that measure the longitudinal polarization relaxation (such as 
the solvation dynamics of an ion) than in experiments that measure the transverse 
relaxation, such as the dielectric relaxation. This can be understood from the expressions 
for the force constants of polarization fluctuation, as given by the following expressions 
(Chandra and Bagchi 1991) 

c) 1 L Kd k) = - 1 

(2%)’ EAk) - 1 ’ 

where eL(k) and Edk) are the longitudinal and transverse dielectric functions (Bagchi 
and Chandra 1991, Madden and Kivelson 1984), respectively. In the long wavelength, 
that is, in the k + 0 limit), the force constant for longitudinal fluctuation is much larger 
than that for the transverse fluctuation. This is the reason why a collective excitation 
is possible for the longitudinal polarization. 
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Lastly, it should be pointed out that the hydrodynamic theory treats both the 
overdamped and the underdamped dielectric relaxation within the same hydrodynamic 
approach which, therefore, offers a unified description. 

4. Solvation dynamics 
By solvation dynamics one usually means the time dependence of the solvation 

energy of a newly created charged species in a dipolar liquid. In experiments this is 
measured most conveniently by following the time dependence of the Stokes shift of 
fluorescence from the charged probe-the fluorescence undergoes a continuous red 
shift with time. The solvation dynamics is usually represented in terms of the following 
function 

where EsOiv(t) is the time-dependent solvation energy which may be proportional to the 
average frequency of the fluorescence spectrum at time t .  As a result of the remarkable 
advances in the laser spectroscopy and the related ultra-fast techniques, several exciting 
experiments (Kosower and Hupert 1986, Barbara and Jarjeba 1988a, b, Simon 1988, 
1990, Maroncelli et al. 1989, Fleming and Wolynes 1990, Weaver and McManis 1990, 
Barbara et al. 1992, Gauduel 1992, Maroncelli 1992, Rossky and Simon 1994) have 
been performed recently which measured the time dependence of the function S(t) .  
In this account, we focus on a few fundamental theoretical questions that we shall 
attempt to understand. The present scenario, as we discuss below, is rather encouraging. 

Let us first briefly summarize the continuum model predictions (Bakshiev 1964, 
Bakshiev et al. 1966, Mazurenko and Bakshiev 1970, Bagchi et al. 1984, 1989, Van 
der Zwan and Hynes 1985). When the dielectric relaxation of the dipolar solvent is a 
single exponential in time with ZD as the (Debye) relaxation time, then the continuum 
model predicts that the solvation dynamics is also single exponential both for an ion 
and a dipole with slightly different time constants (z& given below. 

For an ion 

T D  

€0 
zs=-, 

For a point dipole 

2Eco + 1 
2€0+ 1 . z, = ___ 

Experiments and computer simulations have shown that the continuum model fails to 
describe the essential features of the solvation dynamics. For example, the solvation 
correlation function S(E) can be strongly non-exponential even when the dielectric 
relaxation is single exponential, in particular that the solvation correlation function can 
exhibit rich and interesting behaviour is not even anticipated in the continuum models. 
This richness can be attributed to the fact that solvation dynamics probes the details of 
intermolecular correlations neglected in the continuum model, as discussed in the 
previous sections. 

Two rather different types of molecular theories have been put forward to explain 
the experimental findings. In one approach, pioneered by Wolynes (Wolynes 1987), the 
well-known mean spherical approximation (MSA) model for ion solvation (Chan et al. 
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1979) was generalized to the time domain. This theory was subsequently expended 
greatly (Nichols I11 and Calef 1988, Rips etal. 1988a, b) and has been applied to analyse 
experimental and computer simulation results, with considerable success (Maroncelli 
1993). This is certainly the easiest molecular theory for applications. There are 
essentially two drawbacks of the MSA. (i) It is not clear how to include the effects of 
the translational modes of the solvent in the solvation dynamics. (ii) It is not easily 
extendable beyond MSA which is reliable only for weakly polar dipolar liquids. 

The second approach is based on the molecular hydrodynamic equation mentioned 
earlier. Here the time-dependent solvation energy of an ion is assumed to be given by 
the following expression (Calef and Wolynes 1983, Bagchi 1989, Bagchi and Chandra 
1991) 

where Eo( r) is the bare electric field of the ion and P( r, t) is the time-dependent solvent 
polarization induced by the ion-position r of the solvent molecule being measured from 
the centre of the ion. The latter is assumed to be immobile. Although, in principle, it 
is possible to include the effects of the solute ion on solvent dynamics (and this has been 
discussed in Chandra and Bagchi (1989)), most of the theoretical studies have assumed 
pure solvent dynamics for P(r, t). Under this approximation, it is convenient to work 
in the Fourier space using k as the wave-vector conjugate to the position r. From the 
molecular hydrodynamic theory, one can derive the a simple relation for the 
wave-vector and frequency dependent longitudinal polarization (Roy and Bagchi 
1993a). This subsequently leads to the following equation for the time dependent 
solvation energy (Roy and Ragchi 1993a) 

where C(k, z) is the generalized rate of solvent polarization relaxation and is given by 

Here, Q is the charge of the nascent ion being solvated. zc denotes the distance of closest 
approach between the solute ion and a solvent molecule. If the ion and the solvent are 
assumed to be spherical with diameters equal to 2 ~ ~ "  and u, respectively, then 
r, = (1/2)(2riOn + g). zI = (I/k87')'" is the inertial time constant of rotation of the 
solvent molecules having an average moment of inertia I .  The static orientational 
correlations between the solvent molecules are presented by the quantity fL(k) where 
f L (  k) = I - (pd47r)c( 1 10; k). Here, po is the average number density of the dipolar liquid 
and c( 1 10, k) is the ( I  10) component of the solvent two particle direct correlation 
function in the intermolecular frame (Gray and Gubbins 1984). The other static quantity 
that appears in the above set of equations is the wave-vector dependent longitudinal 
dielectric function, a(k). This is, in turn, related tofL(k) as 

In equation (30a) p is the solvent translational parameter defined earlier and signifies 
the relative importance of the translational modes of the solvent molecules in the 
polarization relaxation. 
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0 0.5 1 .o 
t IT, 

Figure 9. The time dependence of the solvation energy time correlation function [S( t ) ]  of an 
ion in the Brownian dipolar lattice of polarity q = 1/3. The molecular hydrodynamic 
calculation with memory effects is shown by the solid line and the computer simulation 
results by solid circles. The prediction of the Fried-Mukamel theory is shown by the 
dash-dotted line and that of the Markovian hydrodynamic theory (as reported by Zhou 
er uZ. (1992)), by the dashed line. Note that the time is scaled by zo. 

The dissipative dynamics of solvent are incorporated in the rate of polarization 
relaxation by the quantities, rz(k,z)  and rT(k,z) which are termed as the rotational 
and the translational dissipative (or memory) kernels, respectively. These functions 
account for the momentum dissipation through intermolecular interactions, for example 
by collisions, as they are akin to the friction coefficients that resist the motion of a 
molecule in dense liquids. The dissipative kernel in the two extreme cases of long 
wavelength (that is in the k + 0) limit and small wavelength (that is in the k + m) can 
be easily obtained by computer simulations or theoretically. Since we know very little 
about the dependence of rR(k,z) in the intermediate k region, the following 
phenomenological for has been proposed (Komath and Bagchi 1993) 

where r S ( z )  = &z) = rR (k + 00, z )  (the single-particle limit) and ~,(z) = r R  (k = 0, z) 
(the collective limit). This has the correct limiting and the low k behaviour. Note that 
the above expression uses both the single particle and the collective friction coefficients. 

Equations 30 (a, b) have been used to calculate solvation dynamics in both the 
overdamped and the underdamped limit. We remind the reader that a liquid is said to 
be in the underdamped limit when the orientation and the angular momentum both 
relaxes at comparable rates so that the momentum relaxation can not be neglected. Thus, 
this is the opposite limit of that treated in Brownian dynamics. Here we shall present 
comparisons only with recent computer simulations because such comparisons are 
precise. 

First, let us present the results for the overdamped limit. In this case the system is 
a Brownian dipolar lattice which has been discussed earlier. The solvation is 
non-exponential (Komath and Bachi 1993). The agreement between theory and 
simulation is remarkable. It is important to note that no adjustable parameter has been 
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t ( in units of T , )  

Figure 10. The comparison between the three theories of solvation dynamics in an 
underdamped Stockmayer liquid. Here we plot the solvation time correlation time, S(t), 
for the situation when both the solute ion and the solvent molecules are translationally 
frozen, that is p = 0.0 for solvent. The solid line represents the molecular hydrodynamic 
theory (MHT), while the dashed line corresponds to the dynamic mean spherical 
approximation (DMSA). The results of the memory function theory (MFT) of Fried and 
Mukamel are indistinguishable from MHT and therefore, have not been shown separately. 
The simulation results are shown by circles. The latter compare extremely well with the 
theoretical predictions. The other system parameters are the same as in figure 8 of this 
review. This figure has been taken from Roy and Bagchi (1993a). 

used to generate the theoretical results shown in this figure 9, the rotational kernel has 
been calculated by using the molecular hydrodynamic equations given above. 
Moreover, the results from Fried and Mukamel(l990) and the hydrodynamic theories 
both give virtually indistinguishable results (Komath and Bagchi 1994) although the 
inputs for the two theories are quite different. 

Solvation dynamics in underdamped liquids is currently a subject of great interest. 
Computer simulations (Maroncelli and Fleming 1988, Carter and Hynes 199 1, Fonseca 
and Ladanyi 199 1, Maroncelli 199 1, Neria and Nitzan 199 1 ,  Papazyan and Maroncelli 
1991, Perera and Berkowitz 1992, Maroncelli 1993, Maroncelli et al. 1994) and 
experiments (Rosenthal et al. 1991) have shown that the solvation in an underdamped 
liquid is biphasic with the two phases showing very different characteristics. The 
solvation starts with an ultra-fast component which decays in a few tens of femto 
seconds with a Gaussian time dependence. This part contributes about 6 0 4 0 %  to the 
total solvation. This is followed by a slow, exponential-like decay which carries the rest 
of the strength. Computer simulations and theoretical studies further suggest that 
the latter can be attributed to diffusive relaxation processes involving primarily the 
nearest-neighbour molecules. On the other hand, the nature of the ultra-fast component 
is somewhat controversial as to different explanations (Cho et al. 1992, Chandra and 
Bagchi 1991 a, b, Roy and Bagchi 1993b, 1994) have been put forward. Cho etal. (1992) 
suggested that the initial Gaussian ultra-fast decay can be explained in terms of 
unphasing of independent oscillators provided a correct distribution of force constants 
of these oscillators is used. These results could provide a unified descriptipn of the Kerr 
relaxation and solvation dynamics experiments. A different interpretation has been put 
forward by Chandra and Bagchi (1991a, b), who suggest that the ultra-fast component 
arises primarily from the underdamped relaxation in a macroscopic potential whose 
force constant is given by the k = 0 limit of equation (24). We shall come back to this 
interpretation again after we discuss the results. 
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In figure 10 we compare the results of the hydrodynamic theory with the computer 
simulation studies of Neria and Nitzan (1 992). Here the system is the model Stockmayer 
liquid. The solvation dynamics in this system is quite different from what is observed 
in the overdamped limit-much of the decay can be well described by a Gaussian 
function of time. Here again the theoretical curve has been generated without any 
adjustable or external parameter. The agreement is truly amazing. The reason for such 
a good agreement is that the system is weakly polar so that static correlation functions 
provided by MSA (Wertheim 197 1) are quite accurate. In this case also, Fried-Mukamel 
and the hydrodynamic approach led to almost identical results (Roy and Bagchi 1993a). 
It is note-worthy that the dynamic mean spherical approximation (Wolynes 1987, 
Nichols and Calef 1988, Rips et al. 1988a, b) also gives almost identical agreement with 
the simulation, as also shown in figure 2. of (Roy and Bagchi 1993a). 

The above comparisons between simulation and theory clearly demonstrate that we 
have achieved a certain degree of understanding about the mechanism of solvation 
dynamics in simple dipolar liquids. They also answer several important questions. 
Firstly, it is clearly that in the absence of any specific solute-solvent interactions, 
solvation dynamics probes the unperturbed or natural motion of the solvent. Thus, in 
the language of statistical mechanics, the response of the solvent is linear. Secondly, 
in the absence of the translational modes, the solvation dynamics is highly 
non-exponential-precisely as predicted by the theory. More importantly, this 
non-exponentiality is a consequence of the local or short-range correlations present in 
a dense dipolar liquid. The translational modes reduce the effects of the local 
correlations by accelerating their decay, which may often be significant. Thirdly, in an 
underdamped liquid, the molecular theory presents the following scenario for the 
ultra-fast Gaussian solvation. In the short time, the dynamical response is inertial, 
especially in Stockmayer liquid where molecules are spherical and the only retarding 
friction is the dielectric friction. The relaxation is further accelerated because the 
relevant motion is collective which relaxes under the influence of a collective potential 
whose force constant, given by equation (24), is rather large for the long-wavelength 
modes. This explains why an underdamped relaxation can be indeed proceed at an 
astronomically fast speed. However, the explanation of the observed results in 
acetonitrile (McMorrow and Lotshaw 1991, Rosenthal et al. 1991, Cho et al. 1992, Roy 
et al. 1993) can be more involved. This is clearly a very interesting study for further 
work. 

5. Relation between single-particle and collective memory function 
In this section, we address the relationship between the single-particle and the 

collective orientational correlation functions. These correlation functions in turn are 
dependent on the memory functions. In order to make the discussion more quantitative, 
let us define two rather different orientational correlation functions-one for the single 
particle as 

Cyrn(t) = (Y&[Wo)IY/m[Q(t)I), (32) 

(33) 

and the other for collective as 

C d k  ,t> = ( Y f A k  O)Y(rn(k t>>. 
where 
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and Yim(s2 ) are the spherical harmonics of rank 1 and projection m. The sum in equation 
(34) runs over all the molecules of the liquid. As usual, k is the wave-vector conjugate 
to the position r. 

On rather general grounds, these correlation functions can be represented in terms 
of their respective memory functions as follows (Madden and Kivelson 1982, Bagchi 
et al. 1990) 

where z is the Laplace frequency conjugate to time t and t (z)  and I-( k, z )  are the memory 
functions for the single-particle and the collective angular momenta relaxation, 
respectively. In the expression for the collective orientational correlation function, 
f (ZZm, k) is related to the orientational pair correlation function that represents the 
orientational pair correlation function that represents the orientational caging and its 
precise form will be discussed in the next section. kBT is the Boltzmann constant times 
the absolute temperature. The memory function for the single-particle motion may be 
equated with the friction, but not with the collective one which may be significantly 
different-the definitions of these quantities will be madqprecise later. Clearly, in order 
to obtain the correlation functions, we need the memory functions. The first-principles 
calculations of these functions are extremely difficult and have not yet been done for 
any realistic system. This reason alone has made our understanding of orientational 
relaxation imprecise. 

Recently, a detailed microscopic theory of orientational relaxation in dense 
molecular liquids has been developed where a self-consistent treatment of the single 
particle and collective orientational relaxation was presented (Bagchi and Chandra 
1990, 1991, Chandra and Bagchi 1989b, 1990). The merit of this formalism is that the 
local orientational and spatial correlations were treated properly. This theory was 
applied to study solvation dynamics both in the slow (that is, overdamped) liquids 
(Bagchi 1989, Chandra and Bagchi 19896) and the fast (underdamped, inertia 
dominated) liquids (Roy and Bagchi 1993, Roy et al. 1993). However, the theoretical 
calculations for orientational relaxation could not be pushed to a proper conclusion for 
the following reason. In order to carry out the full calculation of the dielectric friction, 
we need the full wave-vector and frequency dependent collective memory function. 
As mentioned earlier, it was not possible to calculate this quantity. Thus, a full 
self-consistent calculation could not be done in the past. 

The situation has improved somewhat recently. Although it is still not possible to 
calculate the full collective memory function, there is now a reliable method to obtain 
this quantity directly from experiment in the zero wave-number limit (Bagchi and Roy 
1993, Roy and Bagchi 1993a,b, Roy et al. 1993). In this method the molecular 
hydrodynamic equations are used to obtain a microscopic expression for the 
wave-vector and frequency dependent dielectric function in term of, among other 
functions, the collective memory function. Then the long wavelength limit of this 
relation can be used to express the collective memory function in terms of the frequency 
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dependent dielectric function-the latter can now be obtained from the dielectric 
experiments (Bagchi and Roy 1993, Roy and Bagchi 1993a, b, Roy et al. 1993). This 
is an exactprocedure. The sole limitation is that it gives only the long wavelength limit 
of the collective memory function. So, as a first approximation, one replaces 
the wave-vector dependence of the collective memory function by its k = 0 limit in the 
calculation of the dielectric friction, i ~ d z ) .  This method has been used rather 
successfully in explaining both the experimental and computer simulation results on 
solvation dynamics in a wide variety of systems (Bagchi and Roy 1993, Roy and Bagchi 
1993a, b, Roy et al. 1993). It should be pointed out here that this procedure is entirely 
different from the continuum model. method which also relates the single-particle 
memory function (the dielectric friction) to the dielectric function. We shall show that 
while the former breaks down completely in dipolar system, our microscopic procedure 
works quite well. 

The main objective here is to develop a self-consistent microscopic description 
of orientational relaxation in slow dipolar liquids. This, however, requires one to 
address several connected issues which arise naturally. Therefore, we discuss the 
following specific subjects. First, a derivation of the expression for the collective 
memory function in the overdamped but non-Markovian limit is presented. A 
microscopic expression for the dielectric friction is also derived. Next, these 
expressions and also the continuum model predictions are verified via a Brownian 
dynamics simulation of a dipolar lattice. The single-particle friGtion is calculated by 
using the collective memory function. This finally allows one to calculate the 
single-particle orientational correlation function. 

The results of this study are rather interesting. First, we find that the continuum 
model gives an erroneous frequency dependence of the dielectric friction obtained by 
computer simulation. Thus, this method of finding the memory functions is to be 
discarded. The microscopic method, on the other hand, provides a much better 
description of the dielectric friction. We have obtained the single-particle orientational 
correlation function directly from the collective memory function. The calculated 
single-particle dielectric friction by using this memory function exhibits a qualitatively 
correct frequency dependence and is quite different from Tc(z). We discuss the reason 
for this difference. 

This section has been split up into three subsections: subsection 5.1. Contains the 
theoretical formulations and the molecular hydrodynamic equations, while subsections 
5-2. and 5.3. Contain the calculations of collective dissipative kernal and the 
single-particle friction, respectively. 

5.1. Theoretical formulation: the molecular hydrodynamic equations 
In this section, let us briefly summarize the essential features of the molecular 

hydrodynamic description of the orientational relaxation of a tagged puticle in a dense 
dipolar liquid. The starting point is, as usual, a set of conservation equations of the 
relevant dynamical variables associated with the motion of the particle such as 
the position (r), orientation (52) and time ( t )  dependent number density, ps(rr 52, t )  and 
the spatial and angular momentum densities, g%r, 52, t )  and gi(r, Jz, t), respectively. The 
relaxations of the momentum densities depend on the force field exerted by the time 
dependent fluctuations in the number density of the surrounding solvent molecules. This 
force field, acting on the tagged particle at position (r) and orientation (a), can be 
derived from the density functional theory which gives the following general expression 
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for the time dependent free energy functional of an inhomogeneous system (Bagchi and 
Chandra 1991) 

P F [ p ( t ) l =  dr dS2 [in pS(r,S2, t )  - 11 + dr dSZ [lnpo(r, SZ, t )  - 11 I I 
- J drdr‘dQdQ‘ c~(r,r’,51,R’)Gp,(r,R,t)Spo(rr,Rr,t) 

-1 I drdr‘dRdQ’c(r, rr,R,R’)6po(r,51,t)6po(r‘,51’, t), (37) 2 

where Spo(r, R, t) = po(r, 52, t )  - pd4~c, is the fluctuation in the position and orientation 
dependent number density, po(r,fz,t>, of the solvent molecules and po is the 
corresponding average number density. While ca(r, r‘, fz, $2 ’) represents the two- 
particle direct correlation function of the tagged particle and a solvent molecule, 
c(r, r’, R, Q ’) corresponds to the direct correlation function between the two solvent 
molecules. These direct correlation functions are essentially the second-order 
expansion coefficients in the expansion of the free energy functional in the respective 
densities. The basic conservation equations for the motion of a tagged particle of mass 
m, and an average moment of inertia, Z, may then be written as 

- 6 dt‘ dr’ dR‘ Ti(r, r’, fz, fz’, t, t’)g;(r’, a’, 2 ’ )  

+ Fi(r, Jz, t), (39) 

where i = R, T. Vr and VR are the spatial and angular momenta operators, respectively. 
Fi( r, 0, t)  represent the random force F(r, R, t)  and the random torque, N( r, Jz, t )  acting 
on the particle at position r and orientation Q at time t. In the relaxation of the 
spatial and angular momentum densities, the dissipative dynamics is determined 
by the corresponding memory kernels represented as Tr(r, r’, 9, R ’, t, t‘) and 
rR(r, r’, a, fz ’, t, t’), respectively. These are related to the force-force torque-torque 
autocorrelation functions respectively by the second fluctuation-dissipation theorem as 

f d r ,  r’ ,R,R’,z) =! [ dtexp( -zt)(F(r, J z , t =  0). F(r’,R’,t)), (40) 

f R ( r ,  r’, 51, R’, z) = - dt exp ( - zt) (N(r, IR, t = 0) - N(r’, Q’, t)). (41) x 
The solvent molecule may also be described using an identical set of conservation 
equations for the dynamical evolution of the solvent number density, po(r, R, t). 
Evidently, to solve these equations, the primary requisites are the static correlations as 
well as the dissipative kernels. The direct correlation functions may be obtained 
analytically using the MSA (Wertheim 1971, Gray and Gubbins 1984) model for 
systems having low polarity or can be estimated semi-analytically using theories iike 
linearized hypernetted chain (LHNC) approximation (Gray and Gubbins 1984) for more 
polar systems. Clearly, it is the determination of the dissipative kernels that constitutes 
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300 S. Ravichandran and B. Bagchi 

the most crucial step in deriving the single-particle orientational relaxation. The 
standard assumption made in the evaluation of the memory kernal is that the tagged 
particle is immobile; that is r = r’ and f2 = f2’ in equations (40) and (41). 

As mentioned earlier, the calculation of the dissipative kernel in the complex 
molecular liquids is extremely difficult and has not been achieved yet. In the absence 
of a consistent description of the full position and orientation dependence of the memory 
kernel, it may be assumed to be local in space and orientation, but non-local in time 
using the following condition 

(42) 

whereas c( t )  is the rotational friction acting on the single particle. Note that this is the 
friction which is required to determine the single-particle orientational relaxation, using 
equations (6) and (7). But this assumption of the locality in space and orientation is not 
correct for treating the collective motion such as the collective orientational relaxation 
of the solvent molecules (as described by Clm(k,t)). In fact, the assumption of the 
locality in space can be easily removed and the resultant memory function can 
consequently be written as rR(r - r’, t - t’) in an isotropic medium. But the retention 
of the orientation dependence of the memory kernel is not simple and this would 
introduce a non-trivial rank dependence in the kernel. This has already been discussed 
at length in previous sections. Therefore, in the description of the collective 
orientational relaxation, we shall still use r ~ (  k, z )  as an effective representation of the 
collective memory kernel. 

r R ( r ,  r ‘ ,  f2, D ’, t ,  t ‘ )  = i ( t  - t‘)d(r - r‘)d(O - f2 ’), 

5.2. Calculation of the collective dissipative kernel by an inversion procedure 
The above set of hydrodynamic equations are solved most easily if one works in 

the Fourier space with the wave-vector k conjugate to the position vector r and also 
in the Laplace plane with z as the Laplace frequency. Let us first present the solution 
of the above set of equations for the pure solvent. First, the fluctuating number density 
Gpo(r, 9, t )  is expanded in spherical harmonics 

Gpo(k, f2, t )  = C adk ,  t)Y/m(f2), (43) 
Im 

where alm(k, t) = I d 0  Y f ( 9 ) 6 p o ( r ,  9, t). The direct correlation function can also be 
expanded in terms of the spherical harmonics 

c ( k  f2, 0‘)  = 2 c ( l l l m ;  k)Y/lml(f2)Y/pl(R’), (4.4) 

where k is chosen to be parallel to the z-axis. Then, the above molecular hydrodynamic 
theory gives the following expression for a d  k, z )  

V2ml 

where Zm( k, z )  is the generalized rate of density relaxation and is given by (Roy and 
Bagchi 1993) 

where M and I are the mass and the average moment of inertia of a solvent molecule. 
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Relaxation in dipolar systems 30 1 

Note that both the memory kernels have been assumed to be non-local in space and time. 
In the subsequent discussion, we shall assume that r~ (k, z) = Z ~ R  (k, z) and 
rT(k, 2 )  = MrT(k, z). An important quantity which appears in the above expression is 
the orientational caging parameter, Alm(k) = 1 - (p~J4n)c(ZZm; k). In the limit of the 
single-particle dynamics (that is, k 4 m),Alm(k) = 1 but it plays a non-trivial role in 
the collective density relaxation. By using the linear response theory (Madden and 
Kivelson 1984, Chandra and Bagchi 1989, Bagchi and Chandra 1991), the above 
equation for the solvent density relaxation can be extended to obtain the following 
expression for the wave-vector and the frequency dependent longitudinal dielectric 
function, EL(k,z) (Bagchi and Roy 1993, Roy and Bagchi 1993) 

From the above discussion, it is evident that both the rotational and the translational 
dissipative kernels are required to evaluate the dynamical evolution of al,( k, z). 
The translation kernel, TT(k,z) can be obtained directly from the dynamic structure 
factor using the following expression 

where S(k) is the static structure factor. However, the determination of the full 
wave-vector and the frequency dependence of the rotational kernel is much more 
non-trivial and is not known yet. We next describe the inversion procedure adopted to 
determine this quantity from experiments. 

If it is assumed that the wave-vector and frequency dependent rotational kernel, 
rR (k, z), can be approximated by its k = 0 limiting value, then the dissipative kernel 
can be obtained directly from experiments which measure the macroscopic (that is, 
k -+ 0) polarization relaxation, such as the dielectric relaxation. This, similar to equation 
(48), is an inversion technique where a fundamental microscopic quantity is derived 
from an experimentally measurable property of the system. The inversion of equation 
(47) yields the following relation between the rotational dissipative kernel, yR(k, z) and 
the frequency (z) dependent dielectric function, E ( Z )  in the overdamped limit of angular 
momentum relaxation (Roy and Bagchi 1993a, Komath and Bagchi 1993) 

Note that all the quantities appearing on the right-hand side of the above equation may 
be obtained from known experimental results. In particular, 

f ( l l0 ,  k=0)=3Y/(1 - I/Eo), 

where 3 Y  = (47c/3)Pp2p0 represents the polarity parameter of the solvent with dipole 
moment p. p = ( ~ B T )  - '. 

5.3. Calculation of the single particle friction, [~ (z )  
It has already been discussed in the previous section that for dipolar liquids, the 

single-particle friction, [,&) may be resolved into a short-range part, denoted by &-, and 
also a dipolar part, termed usually as the dielectric friction, [D&). In the absence of 
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302 S. Ravichandran and B. Bagchi 

any significant viscoelastic effects in the solvent, 50 is independent of frequency and 
can be obtained using the Stokes-Einstein relation. Therefore, calculation of the friction 
would evidently require the calculation of the dielectric friction from the torque-torque 
correlation function. The above formulation leads to the following microscopic 
expression of the torque 

N(r, 52, t) = - ps(r, 52, t)VR dr’ d o ‘  cd(r. r’, 52, 52’)Fpo(r’. a’, t’). (50) I 
From this torque, one can indeed calculate the friction by using the well-known 
Kirkwood’s formula (Boon and Yip 1980, Wolyes 1988), but this leads to a complex 
four-dimensional integration over the torque-torque autocorrelation function. Here we 
shall simplify the calculation of the friction by assuming that the tagged particle is 
immobile. This leads, after some tedious algebra, to the following expression for the 
dielectric friction 

cL(l10; k)[l + (pd4x)h(ll0; k)] 
z + &o(k,z) 

dk kZ 

where c(llm; k) and h(llm; k) are the (Urn) components of the direct correlation function 
and the pair correlation function in the intermolecular frame with k parallel to the z-axis 
(Bagchi and Chandra 1991). In deriving the above expression, we have assumed that 
the intermolecular correlations are given by a linear theory (such as MSA or LHNC) 
(Wetheim 1971, Gray and Gubbins 1984). so that the only non-vanishing components 
of the direct correlation function are c(000; k), ~ ( 1 1 0 ;  k) and c(l11; k). As already 
mentioned, we have used the collective (that is, k = 0) approximation for the rotational 
dissipative kernel. This expression for dielectric friction will now be used in the 
generalized diffusion equation to obtain the single particle orientational correlation 
function. 

Equation (5 1 )  has an interesting structure. It shows that the dielectric friction can 
be sensitive to the local orientational correlations. Moreover, both the longitudinal and 
the transverse modes contribute to the dielectric friction. Note that by the transverse 
mode, we mean here the ( 1  1 1 )  component in the coordinate frame when k is along the 
z-axis-these are not the transverse electromagnetic modes. Lastly, in the Markovian 
limit, equation (51) reduces exactly to the expressions of Nee and Zwanzig (N-2) 
(1  970) and of Hubbard and Wolynes ( 1  970) if the both the local correlations and the 
effects of the translational modes are neglected (Bagchi and Vijayadamodar 1993). 
We shall soon discuss the predictions of equation (51). 

As already mentioned, one of the objectives of the present discussion is to 
understand the nature of memory functions that are involved in the single-particle and 
collective orientational relaxation. Towards this goal, the results of the available 
memory functions are compared with the Brownian dynamics simulations discussed 
previously in section 2. In figure 1 1 the simulated frequency dependent single-particle 
dielectric friction is plotted for three different polarities and compared with the 
predictions of N-2 and M-K theories. As can be seen from the figure 1 1  (a ,  b and c)  
both the theories fail to capture much of the observed behaviour, although the M-K 
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Figure 1 1. Simulated frequency dependence of single-particle dielectric friction is compared 
with the predictions of Nee-Zwanzig (N-Z) and Madden-Kivelson (M-K) at three 
different polarities at (a) q = 1/12, (b)  q = 1/3, (c) q = 112. The frequency is scaled by 10, 
where TO = (20~) - I .  
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q = 1/2 
0-0 Simulation 0.8 

0.0 8.0 16.0 24.0 
tlz, 

Figure 12. Comparison of simulated single-particle orientational correlation function (Cl ( t ) )  
with the theories of Nee-Zwanzig (N-Z) and Madden-Kivelson (M-K) at q = 1/2. 
Time is scaled by TO. 

theory does a slightly better job than that of N-Z. Note that this particular model 
simulation satisfies all the assumptions that are usually made in continuum mode 
calculations. Therefore, the breakdown of the continuum model can only be attributed 
to the neglect of the local intermolecular orientational correlations-the long-range 
correlations are, or course, correctly included in the continuum model theory. 
The failure of M-K theory is perhaps due to the use of the asymptotic form of the 
orientational pair correlation function, although the basic formalism of this theory is 
rigorous and almost identical to the one described here in the last section. 

In figure 12, the time dependence of the simulated single-particle correlation 
function has been compared with the predictions of the N-Z and M-K theories. 
The theories predict much faster decay which can be seen from figure 12 (c) .  Details 
of C,(t)  are available elsewhere (Zhou and Bagchi 1992, Zhou et al. 1992, Ravichandran 
and Bagchi 1994a, c). 

We now turn out attentio? to the comparison between the single-particle and 
collective memory functions, [ ~ ( z )  and T,(z), respectively. The collective memory 
functions obtained exactly from equation (49) of the last section, except the quantity 
fL(k = 0) = (s + 8d3), where the values of (s) for three different polarities ( q  = (1/12), 
(1/3), (1/2)) are 13-15,5.88,5.45. (Zhou 1993b) respectively. Note that both the above 
quantities are obtained from computer simulations (Zhou 1993b). The frequency 
dependence of these functions are depicted in figure 13 (a, b, c) .  As can be seen from 
the figures, these two functions have entirely different frequency dependencies. 
The collective memory function exhibits much weaker frequency dependence. This is 
because the frequency dependent dielectric functions are only weakly non-Debye even 
at the highest polarity that could be considered here-the situation changes drastically 
when E(Z) is strongly non-Debye, as will be discussed in the next section. 

Next, the prediction of the microscopic equation (51) are compared with the 
simulations of the Brownian dipolar lattice. In figure 14 we present this comparison for 
the frequency dependence of (D&\ it is clear that the agreement is much better than 
what has been obtained from the continuum models or the Madden-Kivelson theory. 
In figure 14 the calculated Cl(t) (obtained by using the calculated (I&) in the 
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Relaxation in dipolar systems 305 

generalized diffusion equation) is compared with the simulations-again the agreement 
is quite satisfactory, especially when compared with the other theories. 

The solid line in figure 14 has been generated completely from first principles-no 
adjustable parameter has been used. The agreement seem to indicate that the basic 
postulates of the molecular hydrodynamic theory are reasonably valid. As discussed 
earlier, equation (5 1) reduced to the continuum limit result when the appropriate limits 
are taken (Bagchi and Vijayadamodar 1993). The main difference between equation 
(51) and the continuum models is that the former includes the effects of the local 
intermolecular orientational correlations. The latter are important in enhancing the 
magnitude of dielectric friction, especially at small frequencies, that is, in the long time, 
better than the other theories. 

Note that in the recently developed theories of solvation dynamics, two rather 
different expression of memory functions have been used. In the solvation dynamics 
the memory function that enters naturally is the wave-vector and frequency dependent 
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q = 112 
6.0 I 

--- - - -  collective R - sinale Darticle 
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0.0 1 .o 2.0 3.0 4.0 

ZZO 

( C )  

Figure 13. Simulated frequency dependence of single particle friction is compared with the 
collective (k= 0 limit) memory function at (a) q =  1/12, (b) q =  1/3, (c) v ] =  1/2. 
The collective memory function is obtained by using the simulated dielectric function, E(z). 
The frequency is scaled by z0. Note that the single-particle friction i s  (0 + t D ~ .  

1 .u 
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Figure 14. The comparison of single-particle orientational correlation function, C,(r) in a 
Brownian dipolar lattice calculated by using equation (51) with that obtained from 
simulations at q = 1/2. As in figure 13, the collective memory function is obtained using 
the simulated dielectric function, ~ ( z ) .  The time is scaled by TO. 
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quantity r R (  k, z) ,  which has been introduced in the last section. The long wavelength 
limit of this wavefunction is the collective memory function T&), while at the small 
wavelength r R ( k , Z )  reduces to the single-particle friction. In the initial theory of 
Chandra and Bagchi (Bagchi 1989, Chandra and Bagchi 1989) the single-particle 
friction ( [R(z) )  was used in place of r ~ (  k, z),  while in the later the collective memory 
function was used (Bagchi and Roy 1993, Roy and Bagchi 1993a, Roy et al. 1993). The 
present study indicates that it might be necessary to include the full wave-vector 
dependent r R ( k , z ) ,  if, a description that is reliable both at short and long times is 
required. However, for solvation dynamics of an ion the collective approximation for 
the memory function should be more reliable, especially at short times, than the 
single-particle approximation. This is because the short time solvation dynamics of an 
ion is dominated by the long wavelength polarization response (Bagchi and Roy 1993, 
Roy and Bagchi 1993). Recently Zhou (1993) has shown that one can successfully 
explain the time dependence of the single-particle correlation function in Brownian 
dipolar lattice by using the collective memory function in a scheme similar to the present 
one. This also justified the validity of the method of translation of the information from 
experiments to the memory function, as proposed here. 

The above discussions considered only the immobile solute for calculating the 
memory function. Some calculations allowing for the mobility have also been studied. 
These calculations show that of c(t) is found to decay much faster in the mobile solute 
than in that of immobile case. This kind of observation has also been observed by 
Papazyan and Maroncelli (1994). 

Before we end this section, a brief mention must be made of several related, highly 
interesting work. Alavi and Waldeck, (1991,1993,1994) have removed the point dipole 
approximation of the usual continuum models by employing a realistic discrete charge 
distribution and obtained generalized expression for the rotational dielectric friction. 
For the organic dye molecules that were commonly used for studies of orientational 
relaxation, the results of Alavi and Waldeck (1 994) appear to be in better agreement 
with the known experimental results than the simple continuum models. In some cases, 
however, the discrete charge distribution model leads to too large a value of the 
dielectric friction. This seems to reflect an inherent limitation of the continuum model. 
When a charge is placed close to the surface of a molecule (which is still assumed to 
be inside a cavity), then the polarizaton of the liquid is very large because the distance 
of the charge from the dielectric continuum is small. This leads to a very large 
fluctuating force and hence a large friction. This unphysical prediction is due to the 
neglect of the molecularity of the dipolar liquid in the continuum modes. In a real liquid, 
the closest distance of approach between any two molecules is bounded from below 
by the sum of the radii of the molecules. In the continuum model, this distance can 
approach zero if the charge is in the surface of the solute molecular cavity because the 
solvent is assumed to be a structureless continuum. A microscopic study of this effect, 
will be worthwhile. 

In very recent work Papazyan and Maroncelli (1994) presented a very detailed study 
of the rotational dielectric friction in the same Brownian dipolar lattice discussed earlier. 
There are several new features of this study. These authors considered the rotational 
relaxation of a dipolar solute different from the solvent molecules. They also studied 
the rank dependence of the dielectric friction, with results almost identical to the ones 
obtained earlier by us (Ravichandran and Bagchi 1994a). Another important finding is 
that the dielectric friction experienced by the solute dipole is substantially smaller if 
the solute is allowed to move rather than keeping it fixed, as assumed in most theories. 
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They also find that the time dependence of E-field correlation functions match that of 
lR(f) reasonably well in the immobile case but are much too fast in the mobile solute 
case. They also find that the discrepancy becomes worse when intrinsic rotation time 
is faster than that of the solvent. So, in all the cases reported above we have used only 
fixed solute to get the dielectric friction. However, the physical significance of the 
friction on a moving solute is not very clear at this point. The detailed study of Papazyan 
and Maroncelli will certainly serve as a reference point for future developments in this 
area. 

6. Orientational caging of translational motion 
In dense molecular liquids at low temperatures, the dynamics is determined largely 

by the short-range order that is present in the system. This short-range order essentially 
means the arrangement and packing of the molecules in space. This packing is, in turn, 
determined by the nature of the intermolecularinteractions. In contrast to atomic liquids, 
where only spherical interactions are involved, angle dependent interactions often 
dominate the total potential energy in molecular liquids. This gets reflected in the local 
molecular arrangements. This molecular arrangement can be represented in terms of 
distance and angle dependent radial distribution functions, g(r ,  - r2. 01, %), which 
describes correlation between two molecules with coordinates (rl,  521) and (r2, Qz). 
At low temperatures, there can be significant degree or orientational correlations among 
the molecules. The importance of these correlations on the dynamical properties of 
molecular liquids is not well-understood yet, except perhaps for liquid crystals. 
However, the orientationally correlated molecules figured many times in the qualitative 
discussions on slow relaxation in molecular liquid, most notably in the discussions of 
Frenkel(1955,1989). We should point out that the orientational pair correlations being 
discussed here is different from the bond orientational order discussed extensively in 
the recent past (Dattagupta and Turski, 1985, 1993, Dattagupta, 1994). 

Now, the effects of spatial correlations on slowing down of spatial density relaxation 
is known for a long time (Boon and Yip 1980, Wolynes 1988). This caging is clearly 
manifested in the sharp first peak in the static structure factor. This caging plays an 
important role in the mode coupling theory of glass transition. There is another related 
effect which has been discussed earlier, that is, the ‘hidden’ role of translational motion 
in reducing the magnitude of rotational dielectric friction. There is, however, a forth 
aspect which is the role of orientational caging on the translational motion. To the best 
of our knowledge this aspect has not been discussed earlier by Ravichandran et al. 
(1994d). Therefore, we briefly describe this point. In dense molecular liquids, 
orientational motion will lead to a change in the force-field experienced by a molecule. 
Thus, orientational motion can contribute significantly to the frictional forces 
experienced by a molecule. In the below we briefly discuss some preliminary studies 
carried out of the effects of this orientational caging by our group-we are not aware 
of any other microscopic study. 

A microscopic expression for the effects of orientational correlation on the friction 
can be obtained by using the molecular hydrodynamic theory described earlier. This 
theory provides a simple expression for the force acting on a tagged molecule, 

F(r, a, t )  = V dr’ d o ’  c(r - r’, R, Q’, t)8po(r’, a’, t ) .  (52) 

We can then use Kirkwood‘s formula (Boon and Yip 1980, Wolynes 1988) to find the 
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friction on the tagged molecule. A somewhat lengthy calculation leads to the following 
expression for the translational friction 

where S(Zllzm; k) are the orientational structure factors, related to c(ll1Zm; k) by 

In deriving the above expression, we have neglected the self-motion of the tagged 
molecule. Note that if we neglect orientational caging, then we obtain essentially the 
same expression obtained earlier by Sjogren and Sjolander (1979) where it comes from 
the ring term of the density fluctuations. Wolynes (1988) has discussed elsewhere the 
validity of this approach to treat dynamics of slow liquids. 

The above equation shows that in slow liquids, orientational relaxation can 
contribute significantly to the translational friction. This is perhaps the first quantitative 
expression for the effects of orientational correlations on translational mobility. 

A preliminary numerical calculation of the total translational friction has been 
carried out in order to estimate the magnitude of orientational caging, by using the 
orientational correlations for a dipolar hard sphere model. In table 4 we show the results 
of such a calculation are presented. In this calculation, a dipolar liquid at the reduced 
density p003 = 0.8 has been considered and the value of the dielectric constant has been 
varied. The integral in equation (53) was evaluated only under the Markovian 
approximation. The dynamic structure factor has been assumed to be given by 
S( k, t )  = S( k) exp ( - Dmk2t/S( k)], where Dm is the bare self diffusion coefficient 
related to the bare translational friction cn, by DTO = kBT/Cm. The above representation 
of S(k, t )  is expected to be reliable at intermediate to large k values. In table 4, the 
contributions of the isotropic term (Cn) and the angular term (&R) are shown separately. 
Because we have used the correlation functions from MSA, the isotropic part is 
invariant to the variation of the dielectric constant of the medium. It can be seen from 
the values that effects of the orientational caging of translational motion are clearly 
significant. Based on this calculation, we anticipate that they may be cases where 
orientational contribution to the translational friction can be comparable to the usually 
considered isotropic part. This can have important consequences and certainly deserves 
further study. 

Table 4. The relative contributions of the rotational part ( [ T R )  and the translational part (Irr) 
to the total translational friction ( [ T  = [n + [TR) calculated from equation (53), for a 
dipolar liquid of density po3 = 0.8 (CT = molecular diameter) and the ratio Dm/2DRoo2 
where &(i = T, R )  are the bare diffusion constants. 

€0 CnKm T R J C ~  

10 2.18 0.21 
20 2.18 0.40 
33 2.18 0.59 
50 2-18 0.8 1 
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7. Conclusions 
Orientational relaxation of a tagged molecule in a dense molecular liquid is a 

complicated process. Not only does the orientational motion derive contributions from 
many different kinds of molecular motions, but the relative weights of these 
contributions are again complex functions of molecular arrangements. The situation is 
further complicated for dipolar liquids where the long range and anisotropic nature of 
dipolar interactions introduce non-trivial static and dynamic correlations that need to 
treated consistently. So long one is happy with the continuum-hydrodynamic 
description, these complications do not raise their ugly head; but as soon as a 
microscopic description is attempted, the enormity of the problem becomes 
obvious. 

In such a situation, the theoretical studies have been naturally devoted to the 
simplest molecular models-dipolar lattice, polar hard spheres and Stockmayer liquids. 
Still, the progress has been rather slow. An appropriate example of the difficulty is 
provided by the calculation of the dielectric friction. Even when it is approximated by 
the Kirkwood’s formula for friction on a fixed dipole, the mean-field calculation cannot 
be carried out rigorously because no accurate expression for the wave-vector and 
frequency dependent memory function rR( k, z),  is yet available. When the collective 
memory function is approximated by the single-particle value (that is, the k + w limit 
of T R ( k ,  z)) ,  then too small an effect of dipolar interactions is predicted. In the opposite 
limit, the replacement of rR(k,z) by its rR(k = 0,z) limit leads to a much better 
effect-but the justification of this approximation is unclear. 

In this review, we have focused on the collective effects in the single-particle 
orientational relaxation. Since, this problem is intimately connected with the problem 
of collective orientational relaxation, a brief review of the same has also been provided. 
A big boost to the whole field of relaxation in dipolar liquids has come recently from 
solvation dynamics. Therefore, a brief review of the latter is also provided to make the 
review self-contained. 

The main theme of the present review is that all the (seemingly) different problems 
in the field of dynamics of dense dipolar liquids are strongly affected by the presence 
of intermolecular correlations in these liquids. Any microscopic theory must pay proper 
attention to these correlations. The situation is further complicated by the different 
dissipative mechanisms that are present in a dense dipolar liquid. 

Finally we come back to the question asked in the title: how much do we really 
understand the role of correlations in the dynamics of dipolar liquids? In order to put 
the question in proper perspective, let us first recall that even a few years ago, the main 
theoretical framework available was the continuum model. Although it was realized by 
all and sundry that the continuum model is inadequate and should be discarded, the real 
thrust for doing so has come only now. The microscopic description that has been 
developed recently by us (Chandra and Bagchi 1991) and by others (Wei and Patey 
1990, Raineri et al. 1992,), includes the correlations properly and appears to be more 
successful (than the continuum model) in describing the detailed dynamics. An example 
is the single-particle correlation function Cl(t) of a Brownian dipolar lattice where the 
microscopic theory fares substantially better than the continuum models of Nee and 
Zwanzig and Hubbard and Wolynes. However, further advances has been plagued by 
the lack of the reliable equilibrium orientational correlations functions. Unfortunately, 
these functions have yet to be measured experimentally. Regarding the dissipative 
kernals (or the memory functions), some progress has been made but a detailed picture 
has yet to emerge. Thus, to answer the question on the extent of our understanding of 
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the effects of intermolecular correlations on dynamics, our answer is that it is still rather 
poor. A lot more effort is needed in this field to obtain a satisfactory understanding. 
Given the importance of this field in chemistry, such an effort will certainly be 
worthwhile. 

We end this review by discussing a few specific problems for future study. On the 
theoretical side, a quantitative description of the wave-vector and frequency dependent 
memory function is required. This is necessary to understand the observed significant 
difference between the memory functions for single-particle and the collective 
correlation function, as described in section 5. There is also the need to understand why 
the simulated memory function for the mobile solute fails to describe the single-particle 
orientational dynamics. Fortunately though, the microscopic description of Cl(t) has 
been rather satisfactory. This may just indicate that in this particular case, the 
approximation of replacing the wave-vector and frequency dependent memory function 
by its long wavelength (that is, k = 0) limit is not serious. However, this requires further 
verification. There is, of course, the need to understand polar effects on orientation of 
real molecules, especially of charged organic dye molecules which are often used as 
probes to test the theories. A step towards this goal has already been taken by Alavi 
and Waldeck (1 99 1, 1993, 1994), who considered a realistic charge distribution, instead 
of treating them as a point charge or a point dipole at the centre of a sphere. A 
microscopic study of this problem will be worthwhile. A more ambitious project would 
be to consider protic liquids. Here a treatment similar to the one developed by Raineri, 
Friedman and coworkers (1992, 1993, 1994a, b) can be a useful starting point. On the 
computational side, there is the need to simulate at least a few more model systems, 
such a face centred dipole lattice. Another good candidate is the system of soft dipolar 
spheres. This system has been the focus of much study in recent years (Kusalik 1990, 
Wei and Patey 1992). However, the questions discussed here have not yet been asked. 
Another attractiveness of this system is that we can study in detail the role of the 
translational modes of the molecules-an aspect deliberately avoided in this review. 
On the experimental side, one would like to see systematic studies which aim primarily 
at understanding the effects of the polarity. Although, systematic studies of orientational 
relaxation exist for non-polar liquids (Ben-Amotz and Scott 1987), similar studies for 
dipolar liquids do not seem to exist. Thus, the field of orientational relaxation in dipolar 
systems still offers a large number of interesting problems which should keep the field 
active for many years to come. 
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